

EWGLAM, 2008

Madrid

Review of Activities in Regional Data Assimilation

Bruce Macpherson

with thanks to Andrew Lorenc, Dale Barker, Stan Benjamin and more.....

This presentation covers the following areas

- current status and plans in Europe, US, Japan
- scientific issues
 - 4DVAR, EnKF, convective scale,
- forthcoming events

Data Assimilation is the process of absorbing and incorporating observed information into a prognostic model.

OED "assimilate, v. t. ... II: to absorb and incorporate."

This is normally done by integrating the model forward in time, adding observations.

- The model state summarises in an organised way the information from earlier observations.
- It is modified to incorporate new observations, by combining new & old information in a statistically optimal way.

1. Needs a good model:

- to carry information from past observations to current time;
- to diagnose unobserved quantities via physical modelling relationships.

2. Needs statistical-dynamical combination of information.

- Forecasts are generally more informative than latest observations, yet all the information from each observation should be extracted.
- Observation networks are incomplete. Information on unobserved variables must be inferred (e.g. from satellite radiances).
- It is impossible to properly sample error distributions physical insight is needed to give:
 - a good model of observational variances and biases.
 - a good model of the structure of forecast errors.

3. Advanced Data Assimilation methods also use models to predict the evolution of forecast errors.

© Crown copyright Met Office

Regional Assimilation techniques operational in SRNWP (Nov 2007)

- None (21 models)
- Surface only (3 models)
- Nudging (6 models)
- 3DVAR (16 models)
- 3DVAR-FGAT (4 models)
- 4DVAR (1 model)
- EnKF (0 models)

Regional Assimilation techniques in global modelling centres (WGNE)

Forecast Centre (Country)	2007	2008	2009	2010	2011	2012
ECMWF (Europe)		-	-	-	-	-
Met Office (UK)	4D-Var, 36 km 3D-V ar, 4 km	4D-Var, 36 km 3D-Var, 4 km	4D-Var, 24 km 3D-Var, 1.5 km	4D-Var, 24 km 3D-V <u>ar, 1</u> .5 km	4 D-Var , 24 km 4D-Var, 4 .5 km?	tbd
Météo France (France)	3D-Var; 9.5 km	3D-Var; 2.5 km	3D-Var; 2.5 km	4D-Var; 2.5 km	4D-Var; 2.5 km	tbd
DWD (Germany)	Nudging; 7 km Nudging; 2.8 km	Nudging; 7 km Nudging; 2.8 km	Ensemble based?	Ensemble based?	Ensemble based?	Ensemble based?
HMC (Russia)				3D-Var	3D-Var	tbd
NCEP (USA)	3D-Var; 12 km	Advanced-Var; 12 km	Advanced-Var; 12 km	Adv or 4D-Var; 8 km	Adv or 4D-Var; 8 km	Adv or 4D-Var; 5 km
Navy/FNMOC/NRL (USA)	3D-Var; 45/15/5 km	3D-Var; 27 <u>/9/3</u> km	3D-Var; 27/9/3 km	3D-Var; 27/9/3 km	4D-Var 9 /3/1 k m	4D-Var 9/3/1 km
CMC (Canada)	3D-Var; 10, 40 km; L58	4D-Var; 10, 40 km; L58	tbd	tbd	tbd	tbd
CPTEC/INPE (Brazil)	3D-Var; 30 km	LENKF; 20 km	LENKF; 20 km	LENKF; 20 km	LENKF; 10 km	LENKF; 10 km
JMA (Japan)	4D-Var, 10 km	4D-Var, 10 km	4D-Var, 10 km	4D-Var, 10 km	tbd	tbd
CMA (China)	GRAPES-3DVAR, 30 km	GRAPE6-4DVAR, 30 km?	GRAPES-4DVAR, 20 km?	GRAPES-4DVAR, 20 km or EnKF?	GRAPES-4DVAR, 15 km or EnKF	GRAPES-4DVAR, 15 km or EnKF
KMA (Korea)	3D-Var; 10, 5 km	3D-Var 10, 5 km	3D-Var 10 km	4D-Var 10 km	4D-Var 10 km	4D-Var 10 km
NCMRWF (India	3D-Var	3D-Var	3D-Var	3D-Var	4D-Var?	tbd
BMRC (Australia)	3D-OI test Met Office 4D- Var (ACCESS)	Met Office 4D-Var (ACCE SS)	Met Office 4D-Var (ACCESS)	tbd	tbd	tbd

© Crown copyright Met Office

NCEP Operational Model/Assimilation Systems

RUC – Rapid Update Cycle - http://ruc.noaa.gov

- 3DVAR Assimilation update every 1h
- Developed largely at ESRL (GSD)
- Forecasts out to 12h (72h in GSD experimental version)

• Rapid Refresh (RR)- early 2010- NCEP implement,

18h fcsts updated hourly

NAM (North American Mesoscale) -

- 6h update frequency
- Forecasts out to 84 h

GFS (Global Forecast System) -

- 6h update frequency
- Forecasts out to 240 h

NCEP Operational Model/Assimilation Systems

2. Advanced Data Assimilation Techniques

- First Order Time-extrapolation to Observations (FOTO)
 - "Simplified 4d-var" technique
 - Will be implemented in next GFS upgrade (April 2008)
- 4d-var (more complex than FOTO)
 - If resources can be obtained
 - Global and regional system available ~2013 (global) & ~2015 (regional)
 - Global application in time for NPOESS
 - NCEP/EMC collaboration with NASA/GMAO makes this effort possible

Regional Assimilation – cycle frequency in SRNWP

- 12-hourly (15 models)
 - mostly no DA
- 6-hourly (34 models)
- 3-hourly (2 models)
- 1-hourly (0 models)

NB 'cycle' means frequency at which forecast products are generated – assimilation cycle may be more frequent eg UK4 model

Gaussian Probability Distribution Functions

- Easier to fit to sampled errors.
- Quadratic optimisation problems, with linear solution methods much more efficient.
- The Kalman filter is optimal for linear models, but
 - it is not affordable for expensive models (despite the "easy" quadratic problem)
 - it is not optimal for nonlinear models.
- Advanced methods based on the Kalman filter can be made affordable:
 - Ensemble Kalman filter (EnKF, ETKF, ...)
 - Four-dimensional variational assimilation (4D-Var)

4D-Var vs Ensemble Kalman Filter

Met Office

Andrew Lorenc 2003:

The potential of the Ensemble Kalman filter for NWP - a comparison with 4D-Var.

Quart. J. Roy. Met. Soc., **129**, 3183-3203.

Eugenia Kalnay et al. 2007:

4-D-Var or ensemble Kalman filter?

Tellus A **59 (5)**, 758–773.

Nils Gustafsson 2007:

comments on above *Tellus A* **59 (5)**, 774–777 **Eugenia Kalnay et al. 2007** response to comments! *Tellus A* **59 (5)**, 778–780

WWRP/THORPEX WORKSHOP on 4D-VAR and

ENSEMBLE KALMAN FILTER INTER-COMPARISONS

BUENOS AIRES - ARGENTINA, 10-13 NOVEMBER 2008

Hosted by the School of Sciences of the University of Buenos Aires and the Center for Atmospheric and Ocean Research CIMA/CONICET

ORGANIZING COMMITTEE

Dr. Luc Fillion, Environment Canada, CAN Dr. Eugenia Kalnay, University of Maryland, USA Dr. Ronald M. Errico, GEST/NASA, USA Dr. Fuqing Zhang, Texas A&M University, USA Dr. Kamal Puri, Bureau of Meteorology Research Centre, Australia

LOCAL ORGANIZING COMMITTEE

Andrew Lorenc © Crown copyright 2007

Fit Gaussian to forecast ensemble.

The Ensemble Kalman Filter (EnKF)
Construct an ensemble
$$\{\mathbf{x}_{i}^{f}\}, (i = 1, ..., N)$$
:
 $\mathbf{P}^{f} = \mathbf{P}_{e}^{f} = \overline{\left(\mathbf{x}^{f} - \overline{\mathbf{x}^{f}}\right)\left(\mathbf{x}^{f} - \overline{\mathbf{x}^{f}}\right)^{T}},$
 $\mathbf{P}^{f}\mathbf{H}^{T} = \overline{\left(\mathbf{x}^{f} - \overline{\mathbf{x}^{f}}\right)\left(H\left(\mathbf{x}^{f}\right) - \overline{H\left(\mathbf{x}^{f}\right)}\right)^{T}},$
 $\mathbf{HP}^{f}\mathbf{H}^{T} = \overline{\left(H\left(\mathbf{x}^{f}\right) - \overline{H\left(\mathbf{x}^{f}\right)}\right)\left(H\left(\mathbf{x}^{f}\right) - \overline{H\left(\mathbf{x}^{f}\right)}\right)^{T}},$

Use these in the standard KF equation to update the best estimate (ensemble mean): $\overline{\mathbf{x}^{a}} = \overline{\mathbf{x}^{f}} + \mathbf{P}^{f} \mathbf{H}^{T} (\mathbf{H}\mathbf{P}^{f}\mathbf{H}^{T} + \mathbf{R})^{-1} (\mathbf{y}^{o} - H(\overline{\mathbf{x}^{f}})).$

Simple 4D-Var, as a least-squares best fit of a deterministic model trajectory to observations

Initial PDF is approximated by a Gaussian.

Descent algorithm only explores a small part of the PDF, on the way to a local minimum.

© Crown copyright Met Office

Assumptions in deriving deterministic 4D-Var

Bayes Theorem - posterior PDF: $P(x|y^{\circ}) = P(y^{\circ}|x)P(x)/P(y^{\circ})$

where the obs likelihood function is given by:

$$P(y^{\circ}|x) = f(y^{\circ} - y), \text{ where } y = H(x)$$

Impossible to evaluate the integrals necessary to find "best".

Instead assume best *x* maximises PDF, and minimises -In(PDF):

 $J(x) = -\ln\left[P(y^{o}|x)\right] - \ln\left[P(x)\right]$

(Purser 1984, Lorenc 1986)

The deterministic 4D-Var equations

 $P(\mathbf{x} | \underline{\mathbf{y}}^{o}) \propto P(\mathbf{x}) P(\underline{\mathbf{y}}^{o} | \mathbf{x}) \qquad \text{Bayesian posterior pdf.}$ $P(\mathbf{x}) \propto \exp\left(-\frac{1}{2} (\mathbf{x} - \mathbf{x}^{b})^{T} \mathbf{B}^{-1} (\mathbf{x} - \mathbf{x}^{b})\right)$ Assume Gaussians $P(\underline{\mathbf{y}}^{o} | \mathbf{x}) = P(\underline{\mathbf{y}}^{o} | \underline{\mathbf{y}}) \propto \exp\left(-\frac{1}{2} (\underline{\mathbf{y}} - \underline{\mathbf{y}}^{o})^{T} \mathbf{R}^{-1} (\underline{\mathbf{y}} - \underline{\mathbf{y}}^{o})\right)$

But nonlinear model makes pdf non-Gaussian: full pdf is too complicated to be allowed for.

 $\underline{\mathbf{y}} = \underline{H}\left(\underline{M}\left(\mathbf{x}\right)\right)$

So seek mode of pdf by finding minimum of penalty function $J(\mathbf{x}) = \frac{1}{2} (\mathbf{x} - \mathbf{x}^{b})^{T} \mathbf{B}^{-1} (\mathbf{x} - \mathbf{x}^{b}) + \frac{1}{2} (\underline{\mathbf{y}} - \underline{\mathbf{y}}^{o})^{T} \mathbf{R}^{-1} (\underline{\mathbf{y}} - \underline{\mathbf{y}}^{o})$ $\nabla_{\mathbf{x}} J(\mathbf{x}) = \mathbf{B}^{-1} (\mathbf{x} - \mathbf{x}^{b}) + \mathbf{M}^{*} \mathbf{H}^{*} \mathbf{R}^{-1} (\underline{\mathbf{y}} - \underline{\mathbf{y}}^{o})$

4D-Var

• Implicitly uses a complete 4-dimensional PDF, with timeevolution as accurate as perturbation model.

 \Rightarrow Can make good use of time-distributed high-density incomplete observations such as satellite soundings.

 To date, 4D-Var has a better track record in good quality NWP systems

Ensemble Kalman Filter

- Gives the best available sample of background errors, at low cost if short-period ensemble forecasts are needed anyway.
- Easier to build

Andrew Lorenc © Crown copyright 2007

4D-Var vs Ensemble Kalman Filter

- Is the wrong question!
- What is the best data assimilation for NWP?
- 4D-Var and Ensemble Kalman Filter have different strengths and weaknesses

 \Rightarrow combine them.

Ways to use Ensembles in VAR, reducing sampling error

- 1. Time average, to give mean covariances (Fisher *ECMWF*)
- 2. Use smoothed Errors Of The Day variances
- 3. Use EOTD scales, smoothed locally in wavelet covariances (Pannekoucke *MétéoFrance*)
- Use EOTD modes, localised using Schur product, in VAR α-control variable (Barker & Lorenc *Met Office*)

Possible future system using Ensemble Perturbations

Met Office Assume traditional transform or ensemble perturbations both model covariances:

$$\mathbf{B} = \mathbf{U}\mathbf{U}^T \qquad \mathbf{P}_{\mathbf{e}} = \mathbf{V}_{\mathbf{e}}\mathbf{V}_{\mathbf{e}}^T \circ \mathbf{C} \qquad \mathbf{B} \approx \mathbf{P}_{\mathbf{e}}$$

 \Rightarrow traditional (v) & new (v_a) control variables can both represent most perturbations;

 $\alpha = \mathbf{U}_v \mathbf{U}_h \mathbf{v}_\alpha$

 \Rightarrow Use both appropriately weighted:

$$\beta_0^2 + \beta_1^2 = 1 \qquad \mathbf{v}_{\mathbf{p}} = \beta_0 \mathbf{U}_v \mathbf{U}_h \mathbf{v} + \beta_1 \sum_{k=1}^n \alpha_k \circ \mathbf{v}_{\mathbf{e}k}$$
$$\mathbf{w}' = \mathbf{U}_p \mathbf{v}_{\mathbf{p}}$$
$$= \frac{1}{2} \mathbf{w}'^T \mathbf{B}^{-1} \mathbf{w}' + \frac{1}{2} \alpha^T \mathbf{C}^{-1} \alpha + J_o.$$
$$J(\mathbf{v}, \mathbf{v}_{\alpha}) = \frac{1}{2} \mathbf{v}^T \mathbf{v} + \frac{1}{2} \mathbf{v}_{\alpha}^T \mathbf{v}_{\alpha} + J_o.$$

Benefits Of Hybrid Var/Ensemble DA

Benefits for Var:

- Introduces flow-dependent initial PDF in 4D-Var.
- Explicit coupling between moisture/temp/wind fields (high-resolution).
- Easily incorporated in Var framework.
- Relatively cheap (if properly preconditioned).

Benefits over ensemble filters:

- Cost does not scale with observations.
- Can couple with nonlinear QC (serial filter can't do that by itself).
- Hybrids more robust for small ensemble sizes and large model error.

But NWP errors are not Gaussian!

Ensemble mean is not a likely state: Deficient in power in small scales. Structures are unrealistically smooth. Short-period forecasts are deficient in precipitation.

What is the "best" analysis?

Mainly a problem for short-period forecasts, since models spin-up realistic structures.

© Crown copyright Met Office

Spin-up of precipitation

conditions interpolated from 12km model.

Lack of initial small scales \Rightarrow deficient precipitation.

Challenges For Convective-Scale DA

- Less experience with high-density observations
 - observation coverage poor
- More nonlinear
- Model errors (e.g. microphysics) large
- Covariances complex, Little diagnostic balance.
- Wide range of scales all significant
 - Lateral boundary conditions important
 - Downscaling of synoptic-scale often useful
 - >2km grid cannot resolve most convection
 - fast phenomena \rightarrow frequent assimilation
- Expensive model, yet need fast delivery

Convective-Scale EnKF:Snyder and Zhang (2003)

- Uses Sun and Crook (1997) nonhydrostatic model. 2km res.
- Assimilation radar radial velocity every 5 minutes. 50 members.

• Beware: OSSE study - perfect model!

NCAR

Convective-Scale EnKF: Snyder and Zhang (2003)

- Interesting result: Importance of wind-mass covariances.
- Perform EnKF with and without updating unobserved fields:

• Shows skill in the flow-dependent ensemble cross-covariances.

3km forecasts from Radar-Enhanced RUC

6-h fcst - HRRR 3-km run **Observed** radar initialized with radar-enhanced CREF 10

Radar-enhanced RUC essential for HRRR forecast success

> 6-h forecasts valid 00z 16 Aug 2007

25 30 35 40 45 50 55 60 65 70 75 6-h fcst - HRRR but No-radar init

RUC

- 3-km run

Koizumi (JMA) Improvement of precipitation forecast by the assimilation of analyzed precipitation with 4D-VAR 0-3 hour 3-6 hour

3 hr. precip. observation

Forecast from 4D-VAR analysis

(Initial Time: 12 UTC, 19 June 2001)

Forecast from OI analysis + PI

(mm)

OPERA radar composite – pilot assimilation study (ERAD 2008)

 some benefit
 lots of quality issues

Met Office

Future events in DA....

8th International Workshop on Adjoint Model Applications in Dynamic Meteorology

18-22 May 2009,

Chateau Resort and Conference Center

Tannersville, PA, USA

NOITAJIMI22A ATAQ NO MUI209MYZ JANOITANAJTNI OMW ^{HT}Z JHT

Melbourne Exhibition Centre: Melbourne Australia

5-9 October 2009

Met Office

& this week next year....

& this week next year....

THE 5TH WMO INTERNATIONAL SYMPOSIUM ON DATA ASSIMILATION

5-9 October 2009

Melbourne Exhibition Centre: Melbourne Australia

Part 2: Review of observation impact studies (Claude Fischer)