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SCECMWF

Revision of the convection scheme, new formulation of convective
entrainment and relaxation time scale

Reduction in free atmosphere vertical diffusion

New soil hydrology/runoff (HTESSEL)

New radio-sonde temperature and humidity bias correction
Increased amount of radio occultation data from COSMIC

Assimilation of microwave AMSR-E, TMI and SSMIS window
channels

Assimilation of ozone SBUV from NOAA-17 and NOAA-18.

Reduce of initial perturbation amplitude for EPS by 30%, use new
moist physics package in computation of targeted tropical cyclone
singular vectors.



Feb 34 2008 IFS cycle 33r1 SCECMWF

* Improved moist physics in tangent linear/adjoint of 4D-Var.

* Physics: Retuned entrainment in convection scheme. Bugfix to
scaling of freezing term in convection scheme. Additional shear
term in diffusion coefficient of vertical diffusion. Increased turbulent
orographic form drag. Fix for soil temperature analysis in areas with
100% snow cover. Change in surface roughness for momentum.

» Modified post-processing of 2m T and g.
» Active assimilation of AMSR-E and TMI rainy radiances.
» Use of 4 wind solutions for QuikSCAT.

» Extended coverage and increased resolution of limited area wave
model.

* Improved shallow water physics and modified advection for ocean
wave model.



SCECMWF

OSTIA sea surface temperature and sea ice analysis
Conserving interpolation scheme for trajectory

New VARBC bias predictors to allow the correction of IR shortwave
channels affected by solar effects

Cleaner cold start of AMSUA channel 14

New physics for melting of falling snow

Increased albedo of permanent snow cover

Cool skin/warm layer SST parametrization

Revised linear physics

Add convective contribution to wind gusts in post-processing
Monitoring of MERIS data



ETS

Equitable threat score for European precipitation against SYNOP data

Curves show 12 month running mean of seasonal values

precipitation exceeding 10.0 mm/24h

04

~0.3

~0.2

—0.1

------- t+42 === t+90
0.4
0.3 LT 'o‘."" :"‘.+*#.:: ’ ’
. - ,'4 ',..“ :m-- ‘t"lﬂ.. * ,,'+“.|- 'll',‘i ll,,..ar
‘* L] 1-*“:- i..':i f
ey ~~ Wy !
P T \f" Ik
0.2 f‘\
-\ o~ ~T N T T
N N T
W4
0.1
5 s s 5 s 5 s 5 s s 5 5 '
1983 1994 1985 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2008

Calendar Years



. !—FESENIVVT:
Winter Cloud Cover : 36h forecast versus SYNOP observation (for

high pressure days over central Europe (last four winters))
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SCECMWF
Cloud Overlap

® Cloud overlap assumption for
cloud diagnostics made
consistent with radiation
scheme. (“exponential
maximum-random” overlap).

® |dentified differences and
Impacts between old and new
cloud overlap assumptions.

Friday 1 June 2007 12UTC ECMWF Forecas tt+ O VT: Friday 1 .June 2007 12UTC
L+M, M+H, H+L, H+M+L clouds
- I - .

® Fixed long-term bug in medium
and low level cloud diagnostics
(MCC, LCC)



Cloud Verification
Obs-to-Model: Ice water content
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Cloud Verification PN
Model-to-Obs: Radar reflectivity v ECMWF
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Cloud Verification 20
Tropical Cloud Height and Depth ECMWF
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New 5-prognostic cloud microphysics
Falling snow and orographic forcing

(BT aET— Syrface Precipitation—:—-

/

(36 hour acc)

“Prognostic snow scheme” “Prognostic snow scheme” 12
minus “Diagnostic snow scheme” minus “Diagnostic snow scheme”




, CCECMWF
Convective Gusts

Motivation: report
about gust front by
DWD

22 February 2008

Proposition: Use low-level wind shear multiplied by mixing
parameter a<l when deep convection is active
UlOgustconv =a max(0U 850 -U 950)

Other formulations trying to simulate cold pool gust fronts
using downdraught W or evaporation have been unsuccessful
(too large perturbations over Oceans and in Tropics) s



l am
Wind gusts S ECMWF
case 22 February 2008 continued
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l am
Wind gusts S ECMWF
summertime example 25 June 2008
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Wind 10m + gusts verif over Sea

Buoy verification
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Hurricane Gustave AMSU-B and 9-12h rainfall
isconsin T799 oper 2008083100 +12h _

T1279 exper. forecast rain+wind 925hPa
without assimilation and wave model

Also “visual” test for adjustment time




- T1279 exper with 200hPa wind

4318

4D

S0k

e .

ATER WAPOR 11:45UTC 1 SEF B8 UW-CIMSSHMelDAS




core pressure (hPa)

w
o

Tropical Cyclone Intensity Error
(mean of 365 days ending at 15 August)

N
o1
!

N
o

[N
o1
|

[T
o o
!

o
!

—e—2005
—e— 2006
—e—2007
—e—2008

1
o1

0

12

24 36 48 60 72 84 96 108 120

forecast step (hours)




Model 1h Rain
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o CECMWF
Conclusion rainfall Maps

* T1279 looks subjectively ok and even more realistic,
results (rainrates) are quasi resolution independent

* First assimilation tests of Radar rainrates (NEXRAD,
planned is to use European archive) have been carried
out by Philippe Lopez

* We know that we probably overestimate very small
rainrates

25



Research project
Run a Cloud Resolving Model initialised with IFS Analysis
over large domains and study:

® Interaction of convection and dynamics through “diabatic heating”
(including cold pools), and the propagation and upscale evolution of
mesoscale convective systems.

* Diurnal cycle
* momentum flux in squall lines (line-normal one is upgradient)

* Identify and possible resolve deficiencies in IFS related to these
Issues.

Realisation:
®* Use the Meso-nh model in collaboration with J.P Chaboureau

®* Focus on large mesoscale systems during AMMA using AMMA (Anna)
reanalyses

* currently CRM resolution is set to 5 km, IFS is run at T511 (40 km)
like Reanalysis, and first T1279 (15 km) forecasts are under way



Ex of AMMA easterly wave case 36h CCECMWEF
verification of convective systems using BTs 10.8y

All images interpolated to T511 grid
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AMMA easterly wave case SCECMWF
verification of convective systems using BTs 10.8y

Satsim IFS 10.8m 2006090900 +12h Satsim MNH 10.8m 2006090900 +12h




AMMA easterly wave case SCECMWF
verification of convective systems using BTs 10.8y
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AMMA easterly wave case SCECMWF
verification of convective systems using BTs 10.8y

Satsim IFS 10.8m 2006090900 +24h

Satsim MNH 10.8m 2006090900 +24h
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AMMA easterly wave case SCECMWF
verification of convective systems using BTs 10.8y

Satsim IFS 10.8m 2006090900 +30h

Satsim MNH 10.8m 2006090900 +30h
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AMMA easterly wave case SCECMWF
verification of convective systems using BTs 10.8y

Satsim IFS 10.8m i"“‘l‘:m““,”ﬁh Satsim MNH 10.8m 2006090900 +36h

1FH

Meteosat 8 10.8m 20060910 12 UTC
: ! T !




AMMA easterly wave case SCECMWF
verification of convective systems using BTs 10.8y

Both models produce low-level cold and warm inflow for mesoscale
system
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AMMA easterly wave case SCECMWF
verification of 925 T

Reasonable in both models, a bit more mesoscale system
dynamics in Meso-nh

Diff IFS-Ana U (m/s) 20060909 6 700 hPa
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a1 ' : ' R
2 =

A
-4
-8

=
-12 H
-16
=20

Diff Analp - ReAna U (m/s) 20060909 06 UTC 700 hPa

I i = od e
\ A ,Q i ‘”
~

-12
-16
-20

20°H




AMMA easterly wave case £SECMWF
verification of 200hPa U

Probably too strong system and upper level divergence (outflow in
Meso-nh)

Ditf IFS-Ana U (m/s) 20060909 6 200 hPa

DIff MNH-Ana U ({m/s) 2006090900 +5h 200 hPa




Preliminar statements

®* 4 periods of 48h have bun run including easterly and non-easterly
wave cases, and a case with convection penetrating into the
stratosphere

®* the IFS at 40 km and 15 km and the Meso-nh explicit at 5 km
produce similar results in terms of success in producing and
propagating mesoscale systems; the biases with respect to Reanalysis
are also similar. Meso-nh produces some more systems but the onset
of convection tends to be sometimes delayed by a few hours compared
to observations, and upper-level outflow overestimated.

* cases with strong forcing (easterly waves) better represented
* need to do more data analysis

®* Heating profiles still have to be produced for Meso-nh and analysed
using e.g. EOFs



SSECMWF

The ECMWF middle atmosphere climate and the
parameterization of non-orographic gravity waves
by A. Orr +A. Untch +N.Wedi
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SPARC observed
climatology
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Good agreement between 33R1 and observations
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Physically based gravity wave scheme

Rely on realistic winds to filter the
upward propagating (unrealistic)
gravity wave source.

Consist of spectrum of waves via hydrostatic
non-rotational dispersion relation
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RF U (m/s>

RF has easterly bias due to
use of Rayleigh friction
which damps U to zero

Westerly shear zone not captured?

Semi-annual oscillation (period~6 months)

1§§g\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
Quasi-biennial oscillation (period ~ 27 months

1994 1995 1996 1997 1998 1999 2000 2001

3% Monthly mean zonally averaged zonal wind
\ ‘ ‘ = & S [ ¥ over the equator for the RF (upper) and WMS
o) SN | N \ L e, ¢ (middle) simulations, and observations
/ % (lower). Observations are ERAI reanalysis up
¥ to 1 hPa for the 1994-2001 period. The winds
# have been meridionally averaged between
& 10°S and 10°N.
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RF U (m/s>
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Realistic QBO in tropics?

DSP produces waves carrying the
necessary westerly momentum flux

Monthly mean zonally averaged zonal wind over
the equator for the RF (top) and DSP (middle)
simulations, and observations (lower). The
observations consist of ERAI reanalysis for the
1994 to 2001 period. The simulation results are
for the same period. The winds have been
meridionally averaged between 10S and 10N. The
contour interval is 5 m/s.
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SSECMWF

Hope to get this implemented within one year,
together with new GHG climatology (monthly values
instead annual average, and covering period 18xx to
2100) ... need to maintain probably a bit Raileigh
friction at model top

06 B
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