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Data Assimilation at the Mesoscale

• Multiple dynamical scales (synoptic down to convective) are 
represented

• No static balance equation valid for all scales

• Smallest represented scales (convective) have very fast error
growth (saturate ~1h) and loss of predictability, hence need
for probabilistic prediction since early stages

• Common assumptions of gaussianity and linearity of errors    

and error growth may break down



Data Assimilation at the Mesoscale

• Observation systems with adequate spatial and temporal 
coverage typically provide indirect measures of model  
variables 

• Observation systems which provide direct measurements     
of state variables typically lack adequate spatial and/or 
temporal coverage  

• Model (System) error becomes a significant issue: how to  
treat it effectively still an open question



Ensemble Kalman Filter

• Monte Carlo implementations of Kalman Filter

• Use sample (from ensemble forecast) estimates of forecast 
error covariances in KF update eqs. 

• Implicit (dynamical) balance relations

• Relax KF linearity assumption of forecast error covariances 
evolution (i.e., linear dynamics of forecast error)



Ensemble Kalman Filter

Issues in Mesoscale Data Assimilation:

Plus
• Use of dynamical, flow-dependent, balance:

1. Avoid complex, explicit modeling of  poorly known Pf;

2. Better use of single level, sparse observations;

3. Better use of observations with complex observation operators;

4. Consistent dynamical update of non-observed state variables

• Relax KF linearity assumption of forecast error covariances 
evolution (i.e., linear dynamics of forecast error)

• Avoids the need of linearization of model & observation 
operators



Ensemble Kalman Filter

Issues in Mesoscale Data Assimilation:
Plus 
• Provides the “best” possible initial ensemble for EPS

forecasts, free!!



Ensemble Kalman Filter

Issues raised for Mesoscale Data Assimilation:

Minus

• As in KF only 1st and 2nd moments of state pdf are evolved => 
gaussian (or near gaussian) errors are assumed 

• Linear relationship between observed and state variables 
over the range of forecast ensemble values

• Sensitive to model error



Ensemble Kalman Filter

Issues raised for Mesoscale Data Assimilation:

Minus

• Sensitivity to model error is particularly important, especially at 
very high resolution where highly-nonlinear processes are to  
be represented/parameterized (microphysics, turbulence, 
surface fluxes).  
However the same problem affects 4DVar!



Ensemble Kalman Filter

How does EnKF compare with 4DVar at the Meso-Convective 
Scale?
1. Difficult to perform a clean comparison in realistic settings, 

implementation issues overshadow fundamental results 
2. Caya et al., 2005, performed one comparison in perfect model

conditions (2 Km grid spacing, synthetic radar obs of radial 
winds and reflectivity, every 5’).
The performances were similar: 

• 4DVar shows an advantage for early assimilation cycles, then EnKF 
gets better due to cycling covariances;

• EnKF sensitive to initial ensemble specification (should not be 
problematic in DA cycling)



Ensemble Kalman Filter

Different flavours of EnKF: 

1. Ensemble of analyses: each member assimilates perturbed   
obs with direct solution of obs-space analysis eqn. 
(Stochastic EnKF) (Houtekamer and Mitchell, Keppene)

2. Serial, or one-observation-at-a-time, assimilation (EnSRF, 
EAKF, “Square Root EnKF”)

3. Local analyses for each grid column, obs selection (LETKF, 
“Square Root EnKF”)



EnKF at CNMCA: proof of concept

� LETKF (Hunt et al, 2007) approach chosen because:

1. Algorithmically simple to code;
2. Proven on various systems of increasing complexity and 

realism;
3. Intrinsically parallel, very appropriate for current cluster 

computing systems;
4. Avoids serial processing of observations (allows taking 

into account correlated observation errors inside local 
patches)



EnKF at CNMCA: proof of concept

� LETKF (Hunt et al, 2007) approach chosen because:

5. Same methodology for global-regional-convective scale! 

For all these reasons LETKF has been chosen at DWD for the 
global model, at CNMCA for regional DA, and in the COSMO 
framework as the (tentative) basis of the next generation DA 
system: 

KENDA project 



EnKF at CNMCA: proof of concept

� Preliminary results from LETKF, CNMCA 
implementation (Bonavita, Torrisi and Marcucci, 2008,QJRMS)



EnKF at CNMCA: proof of concept

CNMCA Implementation
� 30 member ensemble at 0.25°(~ 28Km) grid spacing, 30 

vertical levels (top at 10 hPa)
� 6-hourly assimilation cycle run for 15 days
� (T,u,v,Ps) set of control variables
� Operational 3DVar cycle run in parallel at same spatial 

resolution
� Observations: RAOB (Tuv), SYNOP(SP), SHIP(SP), 

BUOY(SP)
� 700 Km circular local patches
� Multiplicative adaptive covariance inflation, pressure 

dependent 



Surface Pressure forecast spread and analysis increments





EnKF at CNMCA: proof of concept



EnKF at CNMCA: results with in-situ obs

� Results with reduced obs dataset have been found 
good enough to proceed to more realistic settings

� Tuning of filter parameters was also necessary
=>

� New set of experiments (in collaboration with DWD) 
� Same configuration as previous experiments, but with

all available in-situ observations
� Observations only at analysis time (i.e., simple LETKF, 

not 4D-LETKF yet)
� Best “average” observation selection radius was found 

to be  Lpatch=900Km



EnKF at CNMCA: results with in-situ obs

� Observation selection radius (Lpatch) was made  
spatially dependent in order to reflect local observation 
density: this resulted in equal or marginally better 
scores and much better computational load balancing



EnKF at CNMCA: results with in-situ obs

Temperature t+24h forecasts, verification vs ECMWF ana.

BIAS RMSD



EnKF at CNMCA: results with in-situ obs

Temperature t+48h forecasts, verification vs ECMWF ana.

BIAS RMSD



EnKF at CNMCA: results with in-situ obs

Wind t+24h forecasts, verification vs ECMWF ana.

Wind Speed BIAS Wind Vector RMSD



EnKF at CNMCA: results with in-situ obs

Wind t+48h forecasts, verification vs ECMWF ana.

Wind Speed BIAS Wind Vector RMSD



� With all in-situ obs LETKF confirms advantage over 
3DVar in terms of RMSE metric

� With all in-situ obs LETKF confirms more sensitivity to 
model systematic errors 

� Multiplicative adaptive covariance inflation seems 
adequate to combat filter divergence symptoms and 
provide a reliable first-guess ensemble

EnKF at CNMCA: results with in-situ obs



� EnKF full potential has not been realized yet in our 
implementation:
� Improve Covariance Inflation (fully 3D model, 

additive model, stochastic perturb.);
� Filtering of forecast covariances to reduce 

spurious correlations (reduce sampling errors);
� Inclusion of humidity in control variables set; 
� Use of all obs over the assimilation window     

(4D-LETKF); 
� Use of radiances

EnKF at CNMCA: Lessons learned



� Forecasts based on EnKF analysis consistently show 
equal or larger systematic errors than 3DVar initialized 
forecasts 

� This suggests that EnKF is more sensitive to model 
errors than 3DVar: this is expected since EnKF 
analysis is linear combination of forecast ensemble => 
ensemble spread only represents growth of initial 
condition errors (i.e., it is blind to model errors)

� But in Extended KF formulation:

EnKF at CNMCA: Outstanding problems
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� What can we do to treat model error? 
1. Wait for better models!
… in the meantime:

EnKF at CNMCA: Outstanding problems



In low order models (SPEEDY Model, Molteni, 2003)
good results have been obtained with the use of 
additive covariance inflation + low-dim method to 
correct for large scale, slowly evolving model bias 
(Kalnay, 2008)  
Similar method (bias correction after Dee & DaSilva, 

1998, + additive noise + stochastic physics) has been
employed in state of the art oceanic model data 
assimilation (GMAO Ocean EnKF, Keppenne et al., 

2008) 

…

EnKF at CNMCA: Outstanding problems



Model Error…
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Suggestions & Questions


