

SRNWP@FMI

32nd EWGLAM and 17th SRNWP meetings 4th Oct. -7th Oct. 2010 Exeter, UK

Carl Fortelius and Kalle Eerola

Contents

- NWP suites
 - HFS and HARMONIE/AROME
- Computation and data handling
 - HARMONIE/AROME on our new CRAY XT5
- 20 years of HIRLAM
 - Long-term view of the forecast error

Numerical weather prediction systems

• IFS (ECMWF)

- Synoptic scale medum-range and long-range
- LBCs for in house LAMS

• HIRLAM Forecasting System HFS

- Short-range
- Down-stream applications
- LBCs for high-resolution LAMs
- HARMONIE Forecasting System
 - High-resolution short range
- LAPS analysis system
 - Frequent meso-scale analyses
 - Expermental

IFS -> HIRLAM {RCR, MB} -> AROME

Details of the HFS version 7.2

		Forecast	
Analysis		model	
Anarysis		model	
Upper air analysis Version Parameters	4-dimensional variational data assimilation HIRLAM 7.2 surface pressure, wind components, temperature, specific humidity	Forecast model Version Basic equations	Limited area grid point model HIRLAM 7.2 Primitive equations
Horizontal grid length Domain Levels	0.15 degrees on rotated lat-lon grid 582 x 448 grid points 60 hybrid levels	Independent variables Dependent variables	longitude, latitude, hybrid level, time surface pressure, temperature, wind components sp. humidity, sp. cloud condensate, turbulent kinetic energy
Observation types	TEMP, PILOT, SYNOP, SHIP, BUOY, AIREP, AMDAR, ATOVS AMSU-A over sea	Horizontal grid Horizontal grid length	Arakawa-C 0.15 degrees on rotated lat-lon grid
Background Assimilation window	3 h forecast from previous cycle 6 hours	Integration domain Levels	582 x 448 grid points 60 hybrid levels
Observation windows Data cut-off time Assimilation cycle	1 hour 2 h for main cycles, 4 h 20 min for the re-analysis cycles 6 h cycle, reanalysis step every 6 h to blend with large-scale	Integration scheme Orography Physics	Semi-Lagrangean semi-implicit, time step 360 s. Hirlam physiographic data base, filtered * Savijärvi radiation scheme
Surface analysis	features of the ECMWF analysis. Separate analysis, consistent with the mosaic approach of the surface/soil treatment * sea surface temperature, fraction of ice * snow depth		 Turbulence based on turbulent kinetic energy Rasch-Kristjansson condensation scheme Kain-Fritsch convection scheme Surface fluxes according to drag formulation Surface and soil processes using mosaic approach
	 screen level temperature and humidity soil temperature and moisture in two layers 	Horizontal diffusion Forecast length Output frequency Boundaries	Implicit fourth order 54 hours Hourly * "Frame" boundaries from the ECMWF optional BC runs
			 Projected onto the HIRLAM grid at ECMWF Boundary file frequency 3 hours Updated four times daily

The HARMONIE Forecasting System

- AROME cycle cy35h1, http://www.cnrm.meteo.fr/arome/
- Initial state and LBCs: HIRLAM MB
- 24 hour forecasts initialized at 00, 06, 12 and 18 UTC
- 300x600 grid points, distance 2.5 km
- 60 levels
- Output every 15 minutes
- Post porcessing includes a radar reflectivity simulator and comparison whith measurments in real time

Computing and data handling 1/2

- The operational forecasts are produced in-house on a system of two identical Cray XT5m clusters:
- Peak performance 17.3 TFlop/s for each, ca 35 Tflops/s total
- Hex-core AMD Opteron 2.2GHz Istanbul chip
 - 12 (= 2 x 6) cores in a shared memory node
 - 8.8 GFlop/s peak per core, 105.6 Gflop/s peak per node1
 - 64 nodes x 12 cores = 1968 cores per each cluster
 - 16 GB shared memory per node (~1.3GB per core)
- 2D-torus SeaStar-1 interconnection network
- Local Lustre file-system on each cluster: 2 X 60TB raw = 2 X 43TB formatted
- Suse Linux operating system
- PBS batch job control

Computing and data handling 2/2

Elapsed time as a function of number of cores for a 24hour forecast of the FMI HARMONIE/AROME suite. From: Niemelä, S., N. Sokka, and S. Saarinen: AROME forecast migration & optimization at FMI, HIRLAM all staff meeting in Krakow, 13-16 April 2010, www.cnrm.meteo.fr/aladin/s pip.php?action=autoriser&a rg=1594

20 years of HIRLAM

Monthly bias and rms-error values of mean sea level pressure in the FMI Hirlam forecasts from June 1990 to December 2009. The scores of +12, +24and +48 hours' forecasts are shown for the Atlantic-European area. The vertical lines show the implementation times of new versions and thick black curve is a 12 months' moving average.