

Motivation:

in a convection-permitting model (like COSMO-DE) the vertical advection plays a much bigger role than in a convection-parameterising model

 \rightarrow try to achieve higher accuracy in the vertical advection of dynamic variables (u,v,w,T',p'), too

COSMO-model up to now: vertically implicit centered diff. 2nd order ('Old VA')

WRF: vertically explicit upwind scheme (3rd order)

- advantages:
 - Fits best to the explicit horizontal advection and the Runge-Kutta-scheme
 - Relatively easy to implement
- disadvantages:
 - Limitation of Courant number: $C_x + C_y + C_z < 1.4$ (*Baldauf, 2008, JCP*) \rightarrow
 - WRF uses smaller time steps (~15 sec for dx=3km)
 - WRF uses a vertical 'velocity brake'
- → Keep the vertically implicit scheme, but try a higher order of approximation (3rd order in space and time) ('New VA') (COSMO priority project 'Runge-Kutta', Task 8)

current use of an <u>implicit</u> vertical advection in every Runge-Kutta-substep reduces the temporal order of the time-split RK-scheme (*Baldauf, 2010, MWR*)

New proposal: complete operator splitting

$$\frac{\tilde{\phi} - \phi^n}{\Delta t} = R_x(\phi^n) \qquad R_x = \text{complete RK3-scheme, but without vertical adv. } A_z$$

$$\frac{\phi^{n+1} - \tilde{\phi}}{\Delta t} = \beta A_z(\phi^{n+1}) + (1 - \beta)A_z(\tilde{\phi})$$

advantages:

- no implicit scheme occurs inside of the RK
- if the numerical operators commute, then the stability properties of the single operators are passed on to the whole scheme (*LeVeque and Oliger, 1983*)
- the current ,overdamping' in the RK-scheme is not longer needed
- ,expensive' vertical advection is called only once / timestep

Possible problems:

 coupling between fast waves (sound, gravity) and vertical advection is weaker (but in idealised tests no problems were recognized)

'Typical' behaviour in precipitation is not easy to determine ...

example '22.08.2008':

7.5

10 15 20 30 40

Radar

25 5

-010105

Start time: 22.08.2008 00:00 UTC Forecast time: 22.08.2008 13:00 UTC Total precipitation [mm/1h] (shaded) MSL Pressure [hPa] (isolines)

over estimation

Old VA Routine COSMO-DE

0.5

New VA

Vertical cross section of zonal velocity

'12.08.2008 0 UTC run' after 12 h

slightly less noisy velocity field

upper-air-verification against radiosondes at 0 UTC

improvement of new VA against routine is visible in all variables

Summary

The current implicit vertical advection scheme possess a relatively strong damping and is formally not unconditionally stable.

From all of the tested alternatives only the 'complete operator splitting' (= vertical advection outside of the RK-scheme) with a 3rd order implicit vertical advection operator has proven to be superior:

- improved advection properties in idealized advection tests
- unconditionally stable in C_z
- works also in combination with fast waves
- plausible results in idealized and real cases
- runs stable for several COSMO-DE (2.8 km) simulations (summer period);
- computational amount is only slightly increased