
  

Background forecast error covariance matrix

“climatological” 
(imposed homogeneity and isotropy )

Simplifyed structures 
(parameters are partially 
deduced statistically)

reflecting error-of-
the-day uncertainty 
(homogeneity and 
isotropy are relaxed up to  
certain level )

Innovation variance = 
observation error variance + 
forecast error variance in 
observation space

Ensemble of perturbations:
forecast error uncertainty= 
evolution of analysis uncertainty  
+ contribution of the model error

Estimated 
 

Simulated

Derived

Horizontal spectra   more energy in meso-scale at 
day than at night during spring/summer/winter; less 
energy day/night variation  during autumn.

Vertical correlation   Slightly  wider at daytime than 
at night for all season.

Humidity standard deviation  not much diurnal 
change.

Moisture balances  especially during summer (lower 
level) – coupling between unbalanced temperature 
and humidity at daytime is larger than at night.

Diurnal dependency

Horizontal spectra   Winter - more energy in synoptical 
scales;      Summer - more energy in meso scale

Vertical correlation   Slightly  wider in summer than in 
winter

Humidity standard deviation  Larger in summer than in 
winter

Moisture balances  winter – coupling between vorticity 
and humidity is comparable to coupling between 
unbalanced temperature and humidity; summer – 
coupling between unbalanced temperature and humidity 
is dominate. (lower lever)

Seasonal dependency
One year average of  the 
standard deviations  of 
the surface pressure 
innovations 
(observation-minus-
backround state) for 
HIRLAM (Lindskog et 
al, 2006) 

Geographical 
variation of the 
forecast error 
amplitude

ra
w

filte
re

d

Flow-dependent 
auto-correlation 
structures (estimated 
from the  ensemble of 12 
forecast differences using 
wavelets approach) 

500 hPa geopotential 
height (Lindskog et al, 
2007)

HIRLAM approach to use ensembles in 3D-
Var 

•Sample (or Construct) 
perturbations which reflect stuctures of the 
analysis error (EuroTEPS, ETKF or EnsDA) 
•Grow flow-dependent structures by 
integrating analysis ensemble forward in time to 
obtain the 6h forecast perturbations.
•Perform the variational data assimilation 
blending  the  structures of the full-rank statically 
and analytically deduced B

3D-Var
 and the flow- 

and observation-network dependent structures 
of the rank-deficient Bf

ens 
.

•Repeat Steps 1-3

3DVAR Hybrid ETKF 3DVAR

Analysis 

mlen28

(front)

Analysis 
increment

mlen28

(front)

Vertical 
cross-
section

(wind ,T)

Imbalances - abs(dps/3h)

no digtal filter with digital filter

Solution – two step method
 Estimate the phase error (displacement field) 

and warp the first guess.

 Minimize the additive error using standard 
VAR-method.

Hxb

y

x b s 

x b s+T 
T

Estimate Warp

1

 real SEVIRI data (WV)

S
E

V
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V
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@

 20090113:12

H(fc(00+12)) Estimated T SEVIRI 

RTTOV

Promising positive impact for synthetic imager data
Same displacement for all parameters OK assumption
Same displacement for all vertical levels not so good
Warping effect survives the full digital filter
Tests with real SEVIRI data result in realistic 
displacement fields

4D-Variational data assimilation provide flow-
dependent structure functions implicitly within the 
assimilation window. Thus 4D-VAR is equivalent with the 
extended Kalman smoother approach over the data 
assimilation window starting from the climatological 
background error covariance. Hybrid Ensembe 4D-
Variational data assimilation can be thought as a 
powerful synthesis and is now under investigation for the 
HIRLAM forecasting system.

Treatment of the background forecast error covarianceclimatology

Relaxed assumptions on in-isotropy and non-homogeneity

The hybrid ETKF 3D-Variational data assimilation

A non-linear pseudo-relative humidity control variable

Background T q increment from single Ps observation

q control rh* control 

The non-linear transform provides flow-
dependency in specific humidity. Due to 
normalization with the background error standard-
deviation, dependent on the background state, 
super-saturation and negative humidities are 
significantly reduced.  

Frequency of assimilation 
increments close to 
saturation .
  q control (2 outer loops)
  rh* control (1 outer loop)
  rh* control (2 outer loops)

To improve Gaussianity and homogeneity by transform of variables Treatment of non-additive errors

 Treatment of flow-dependency in data assimilatoion
 The 33rd  EWGLAM and 18th SRNWP Meeting, 10-13 October, 2011, Tallinn
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