Treatment of flow-dependency in data assimilatoion

The 33rd EWGLAM and 18th SRNWP Meeting, 10-13 October, 2011, Tallinn

Jelena Bojarova (met.no), Ole Vignes (met.no), Nils Gustafsson(SMHI, met.no), Martin Stengel (SMHI),

Veðurstofa

Meteorologisk

Magnus Lindskog (SMHI), Tomas Landelius (SMHI), Shiyu Zhuang(DMI) and Sigurdur Thorsteinsson (IMC)

climatology

Treatment of the background forecast error covariance

The hybrid ETKF 3D-Variational data assimilation

Diurnal dependency

Horizontal spectra more energy in meso-scale at day than at night during spring/summer/winter; less energy day/night variation during autumn.

Vertical correlation Slightly wider at daytime than at night for all season.

Humidity standard deviation not much diurnal change.

Moisture balances especially during summer (lower level) - coupling between unbalanced temperature and humidity at daytime is larger than at night.

SPD of vorticity (12UTC)

HIRLAM approach to use ensembles in 3D-Var

 Sample (or Construct) perturbations which reflect stuctures of the analysis error (*EuroTEPS*, *ETKF* or *EnsDA*) •Grow flow-dependent structures by integrating analysis ensemble forward in time to obtain the 6h forecast perturbations. •Perform the variational data assimilation blending the structures of the full-rank statically and analytically deduced B_{3D-Var} and the flowand observation-network dependent structures of the rank-deficient B^f_{ens}. •*Repeat* Steps 1-3

Seasonal dependency

- **Horizontal spectra** Winter more energy in synoptical scales; Summer - more energy in meso scale
- Vertical correlation Slightly wider in summer than in winter
- Humidity standard deviation Larger in summer than in winter
- **Moisture balances** winter coupling between vorticity and humidity is comparable to coupling between unbalanced temperature and humidity; summer – coupling between unbalanced temperature and humidity is dominate. (lower lever)

Ensemble of perturbations: forecast error uncertainty=

Relaxed assumptions on in-isotropy and non-homogeneity

forecast error amplitude

One year average of the standard deviations of the surface pressure innovations (observation-minusbackround state) for HIRLAM (Lindskog et al, 2006)

evolution of analysis uncertainty + contribution of the model error

4D-Variational data assimilation provide flow-

To improve Gaussianity and homogeneity by transform of variables A non-linear pseudo-relative humidity control variable

> The non-linear transform provides flowdependency in specific humidity. Due to normalization with the background error standarddeviation, dependent on the background state, super-saturation and negative humidities are significantly reduced.

q increment from single *Ps* observation Background **T**

Solution – two step method

Estimate the phase error (displacement field) and warp the first guess.

Minimize the additive error using standard VAR-method.

Promising positive impact for synthetic imager data Same displacement for all parameters OK assumption **•**Same displacement for all vertical levels not so good

Treatment of non-additive errors

References

Gustafsson, N., et al., 2010: Use of a non linear pseudo-relative humidity variable in a multivariate formulation of moisture analysis. Q. J. R. Meteorol. Soc. 137: 1004-1018, DOI: 10.1002/qj.813

Lindskog, M., et al, 2007: Background error variances in HIRLAM Variational data assimilation. Proceedings of ECMWF Workshop on flow-dependent aspects of data assimilation, 11-13 June 2007

Brewster, K.A, 2003: Phase-correcting data assimilation and application to storm-scale numerical weather prediction. Part I: method description and simulation testing. Mon.Wea.Rev, 131, 480-492.