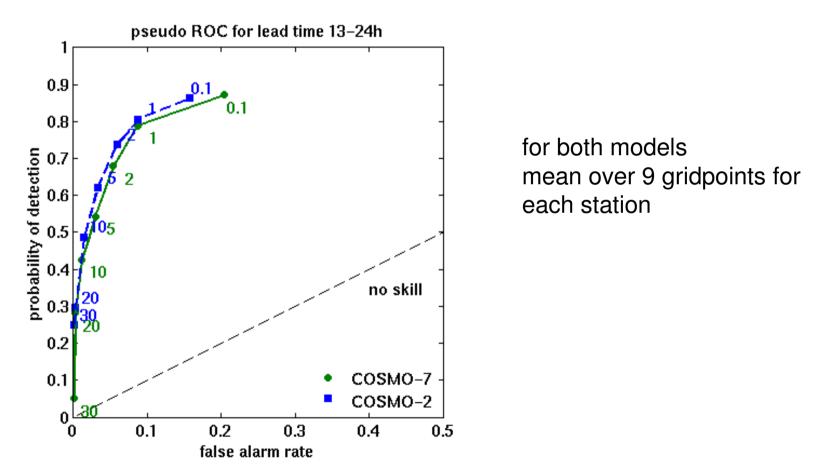


Schweizerische Eidgenossenschaft Confédération suisse Confederazione Svizzera Confederaziun svizra

Swiss Confederation

Federal Department of Home Affairs FDHA Federal Office of Meteorology and Climatology MeteoSwiss

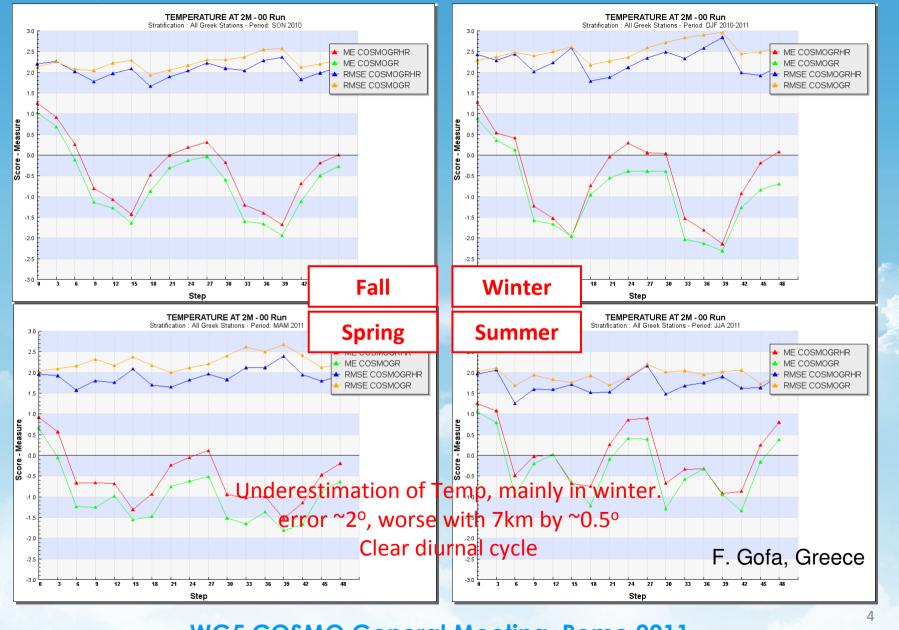
Slides of COSMO-activities in verification in 2011


compiled by Francis Schubiger (MeteoSwiss)

Summaryof activities

- Common verification software VERSUS:
 - common plots
 - conditional verification
 - weather type dependant verification
- Comparison of COSMO-models: 7km vs 2-3km
- Neighborhood verification:
 - MeteoSwiss, also with extension to "fuzzy in time"
 - DWD
- Precipitation verification over Italy with different COSMO-models (CNMCA, ARPA-Piemonte, ARPA-SIM)
- Bootstrapping: using different methods to estimate statistical differences between model errors (DWD)

Verification results at MeteoSwiss in 2011


Precipitation (12h-sums +12 to +24h): Spring 2011 over Switzerland (SYNOP's) COSMO-7 & COSMO-2

COSMO GM / WG5 Parallel Session, 05.09.2011

V. Stauch, MeteoSwiss

Temp 2m - 7km vs 3km

WG5 COSMO General Meeting, Rome 2011

Neighborhood verification for precipitation at MeteoSwiss

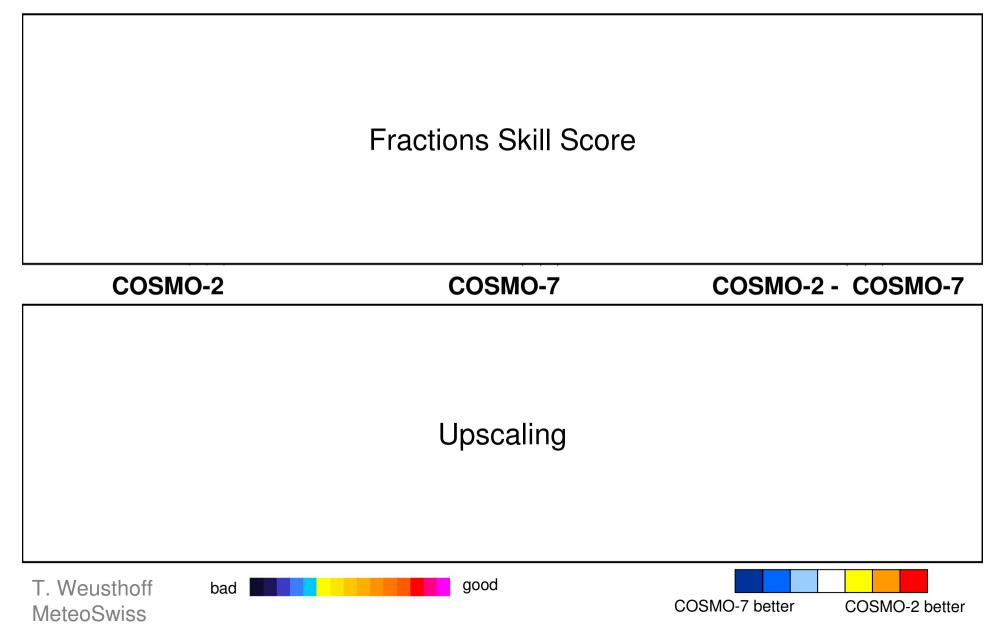
results for 2010

3h accumulated precipitation sums over the domain of the swiss radar composit

models: COSMO-2 and COSMO-7

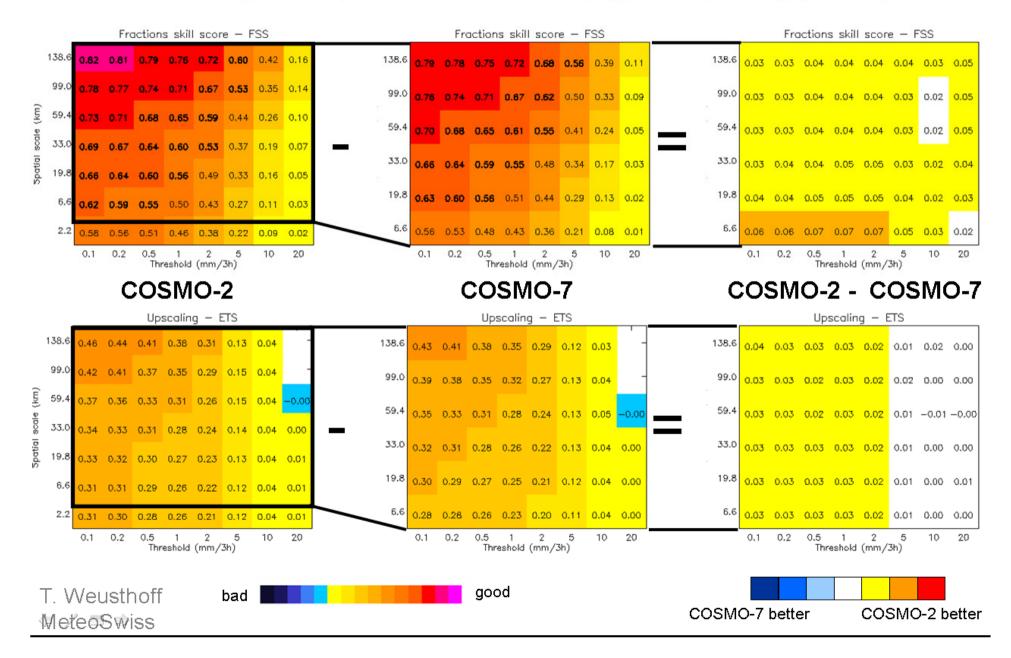
for all 8 daily forecast runs, precipitation sums from +3 to +6h

observation


precipitation estimates of the swiss radar composit

in case of a missing value, the full date will not be evaluated

Extension of the spatial window with a window in time: -> "fuzzy in time" : volume (dx * dy * dt)



Neighbourhood Verification, January–December 2010 3h sums (+3 ..+6h) Fractions Skill Score (top) and Upscaling (bottom)

Neighbourhood Verification, January–December 2010 3h sums (+3 ..+6h) Fractions Skill Score (top) and Upscaling (bottom)

C

Dependency of the lead time

+3 bis +6h

+12 bis +15h

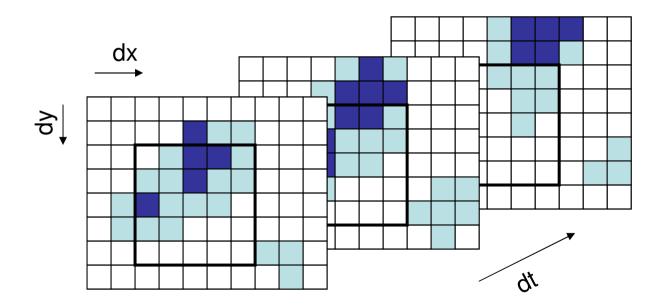
+21 bis +24h

				Frac	tions	skill s	core			1				Frac	tions	skill s	соге			1			Fi	action	s skill :	score		
	138.6	.82	.81	.79	.76	.7 2	.60	.42	.16		138.6	.79	.78	.75	.71	.67	.53	.33	.09	138	6.7	8.7	5 <mark>.7</mark>	2.69	.64	.50	.30	
	99.0	.78	.77	.74	.71	.67	.53	.35	.14	ĉ	99.0	.75	.73	.70	.66	.61	.47	.27	.06	99 Ĉ	° .7	4.7:	.6	3.6	58	.44	.25	
opatial scale (km)	59.4	.73	.71	.68	.65	.59	.44	.26	.10	scale (km)	59.4	.70	.68	.64	.60	.54	.38	.21	.04	scale (km)	4 .e	8.6	.6	2 .5	7 .51	.36	.19	
patial s	33.0	.69	<i>.</i> 67	.64	.60	.53	.37	.19	.07	Spatial s	33.0	.66	.64	.59	.55	.48	.32	.16	.03	Spatial ø	ο.ε	4.6	5	7 .5:	2 .45	.31	.15	
n	19.8	.66	.64	.60	.56	.49	.33	.16	.05	U)	19.8	.64	.61	.56	.52	.45	.28	.13	.02	ທີ 19	8 .6	2 .5	I .5	4.49	9,42	.27	.13	
	6.6	.62	.59	.55	.50	.43	.27	.11	.03		6.6	.59	.56	.52	.46	.39	.23	.10	.02	6	6.5	7.5	5.4	э.4	4 .37	.22	.09	
		0.1	0.2	0.5 Th	1 reshold	2 {mm/3	5 ih)	10	20	-		0.1	0.2	0.5 Th	1 reshold	2 {mm/3	5 3h)	10	20		0	1 0.:	. 0.		2 old (mm/	5 '3h)	10	
					Upsc	aling									Upsc	aling								Up:	scaling			
	138.6	,46	,44	.41	Upsc .38	aling .31	.13	.04]	138.6	.43	.40	.37	Upsc .34	aling .28	.10	.01		138.	3.4	1 .39	.35			.09	00	
	138.6 99.0	.46 .42	.44 .41	.41 .37		-	.13 .15	.04	-	-	138.6 99.0	.43 .39	.40 .37	.37 .34			.10	.01	.00	138.' 99.'	, , , , , , , , , , , , , , , , , , , ,			.32	.26	.09 .11	00	
					.38	.31			00	aie (km)					.34	.28			.00		3.3	7 .35		.32	-26 .24			
scale (km)	99.0	.42	.41	.37	.38 .35	.31 .29	.15	.04	- - 00	soare (km <i>)</i>	99.0	.39	.37	.34	.34 .31	.28	.12	.02		99. 59.) .3 + .3	7 .35 3 .31	.32 .28	.32	.26 .24 .21	.11	.02	
scale (km)	99.0 59.4	.42 .37	.41 .36	.37 .33	.38 .35 .31	.31 .29 .26	.15 .15	.04		aie (km)	99.0 59.4	.39 .35	.37 .33	.34 .30	.34 .31 .27	.28 .26 .23	.12 .12	.02	00	99.) , , , , , , , , , , , , , , , ,	···· · .3 · .3 · .3	7 .35 3 .31 0 .29	.32 .28	.32 .29 .25	.26 .24 .21 .20	.11 .12	.02 .03	
Spatial scale (km)	99.0 59.4 33.0	.42 .37 .34	.41 .36 .33	.37 .33 .31	.38 .35 .31 .28	.31 .29 .26 .24	.15 .15 .14	.04 .04 .04	.00	soare (km <i>)</i>	99.0 59.4 33.0	.39 .35 .32	.37 .33 .30	.34 .30 .28	.34 .31 .27 .25	.28 .26 .23 .21	.12 .12 .11	.02 .03 .03	00 .00	99. 59. 33.	······································	7 .35 3 .31 0 .29 9 .27	.32 .28 .20		.26 .24 .21 .20	.11 .12 .11	.02 .03 .04	

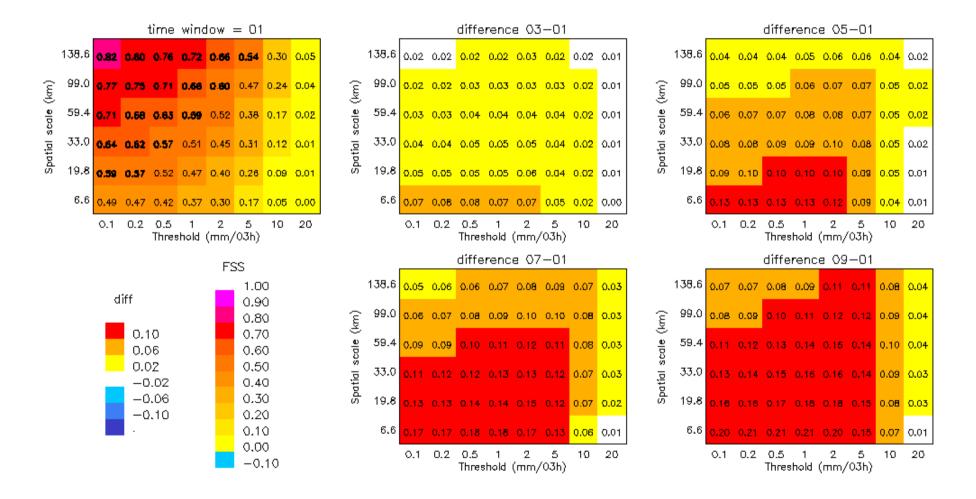
Verification in COSMO in the year 2010

T. Weusthoff, MeteoSwiss

COSMO-7 better


COSMO-2 better

Summary neighbourhood Verifikation precipitation in 2010 @ MeteoSwiss


- COSMO-2 better than COSMO-7 on all scales, differences become less with increasing leadtime
- good forecast of the spatial structure on higher scales
- The skill of the models varies for different weather types and the differences between COSMO-2 and COSMO-7 varies also:
 - best skill: Autumn and Spring, south to northwest weather types
 - greatest difference COSMO-2 minus COSMO-7: Summer and Winter, north- and east types, convective cases

3. "Fuzzy in Time"

- Extension of the spatial window with a window in time
 → volume (dx * dy * dt)
- Evaluation of the forecasts in this volume
- Time-window ntm = [1h,3h,5h,7h,9h]

FSS for different time-windows COSMO-7, July 2010

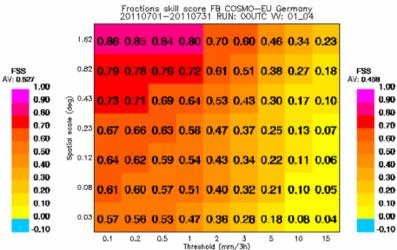
Summary "fuzzy in time"

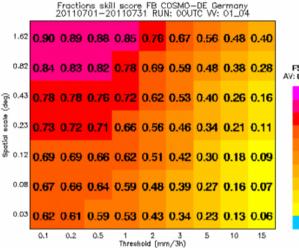
- FSS increases on all scales with increasing time-window
 - greatest effect for small spatical scales
 - lowest effect for high threshods
- Both models show a similar increase
 - difference COSMO-2 minus COSMO-7 stays equal, resp. becomes littler for high time-windows
- For Upscaling the influence of a time tolerance is relatively low und restricted on low thresholds (→ effect of the avergaing)
- → Application of time-windows on the gridscale would make sense; simultaneous application with space tolerance brings no great change

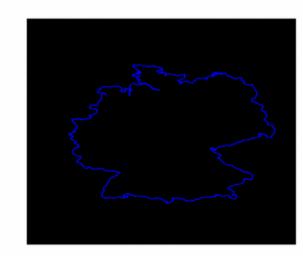
Configuration of precipitation verification with FUZZYmethods Deutscher Wetterdienst

Wetter und Klima aus einer Hand

→ Up to May 2011:

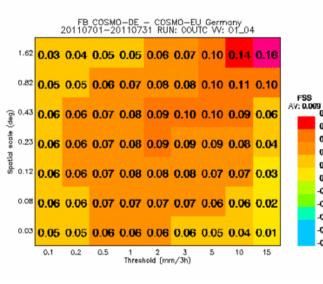

- **Observation data: Radar data prepared by assimilation scheme**
- **Model data: GME-, CEU- and CDE-GRIBS interpolated to CDE-grid (nearest gridpoint)**
- **Run: 00 UTC**
- **Forecast times: GME, CEU: 06-18, 06-30, CDE: 06-18 hours**
- Verification area: part of CDE that is covered by radar data
- → Since May 2011:
 - Observation data as before, modell data: CEU- and CDE-GRIBS interpolated to CDE-grid (nearest gridpoint)
 - **Run: 00, 03, 06, 09, 12, 15, 18, 21**
 - Forecast times: 01-04, 03-06, 06-12, 12-15, 15-18, 18-21 hours
 - Verification areas : CDE, Northern part of Germany, Southern part of Germany, North-Western part of Germany, North-Eastern part of Germany, South-Western part of Germany, South-Eastern part of Germany





Deutscher Wetterdienst Wetter und Klima aus einer Hand

Some examples : **FSS** July 2011, Run: 00 UTC, forecast time 01-04 hours

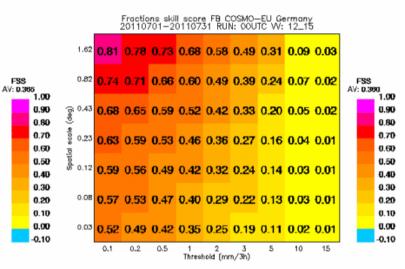

0.15 0.12 0.09

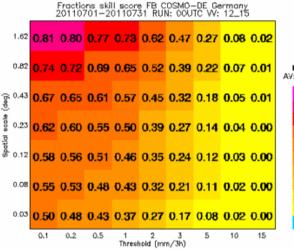
0.06 0.03

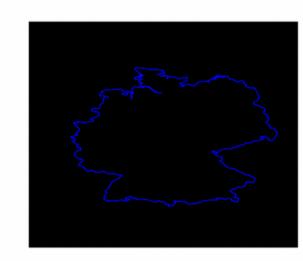
0.00 -0.03

-0.06 -0.09 -0.12

-0.15

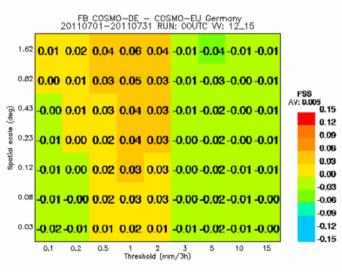



U. Damrath, DWD 14



Deutscher Wetterdienst Wetter und Klima aus einer Hand

Some examples : **FSS** July 2011, Run: 00 UTC, forecast time 12-15 hours

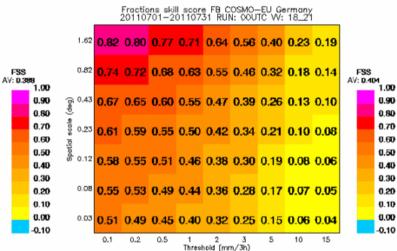

0.12 0.09

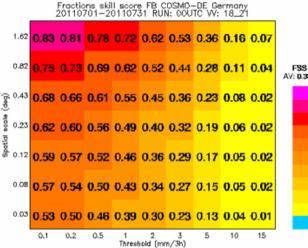
0.06 0.03

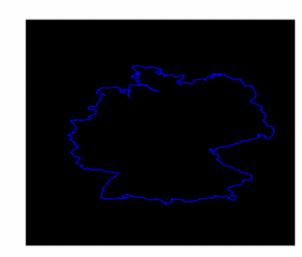
0.00 -0.03

-0.06 -0.09 -0.12

-0.15

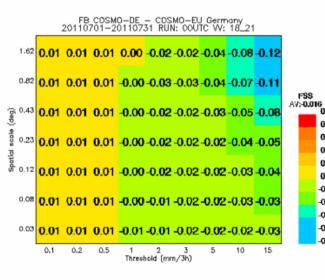






Deutscher Wetterdienst Wetter und Klima aus einer Hand

Some examples : **FSS** July 2011, Run: 00 UTC, forecast time 18-21 hours


0.15 0.12 0.09

0.06 0.03

0.00 -0.03

-0.06 -0.09 -0.12

-0.15

U. Damrath, DWD 16

- The application of Fuzzy-verification for 3h-intervals allows a more detailed insight on the differences between the quality of precipitation forecast of CDE and CEU.
- The results got by MeteoSwiss could be reproduces at least in a qualitative way.
- Fractions Skill Score and ETS upscaling give for special cases notable different results. But the aggregated results are relatively good correlated.
- The effect of LHN is especially for the whole region of Germany and for runs between sun rise and sun set relatively clear pronounced.
- Also for parts of Germany this can be stated but not with the same degree as for the whole region.
- For some forecast intervals the effect of three hour old boundary values of the CEU can be seen.

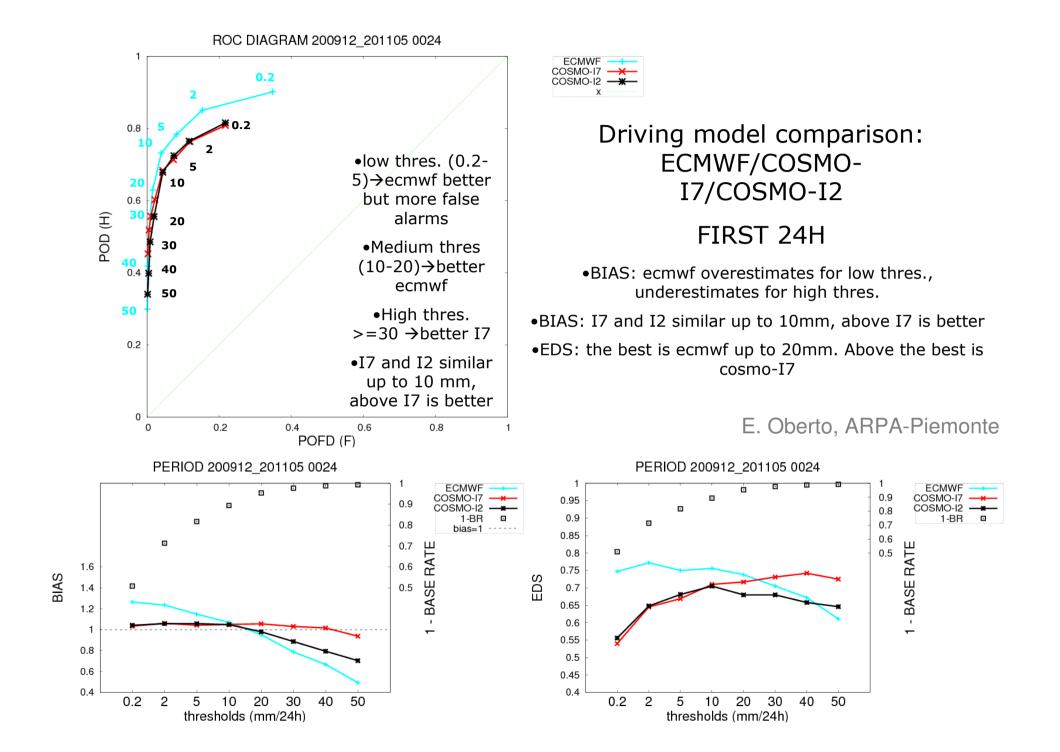
Precipitation verification comparison the several COSMO-Model versions

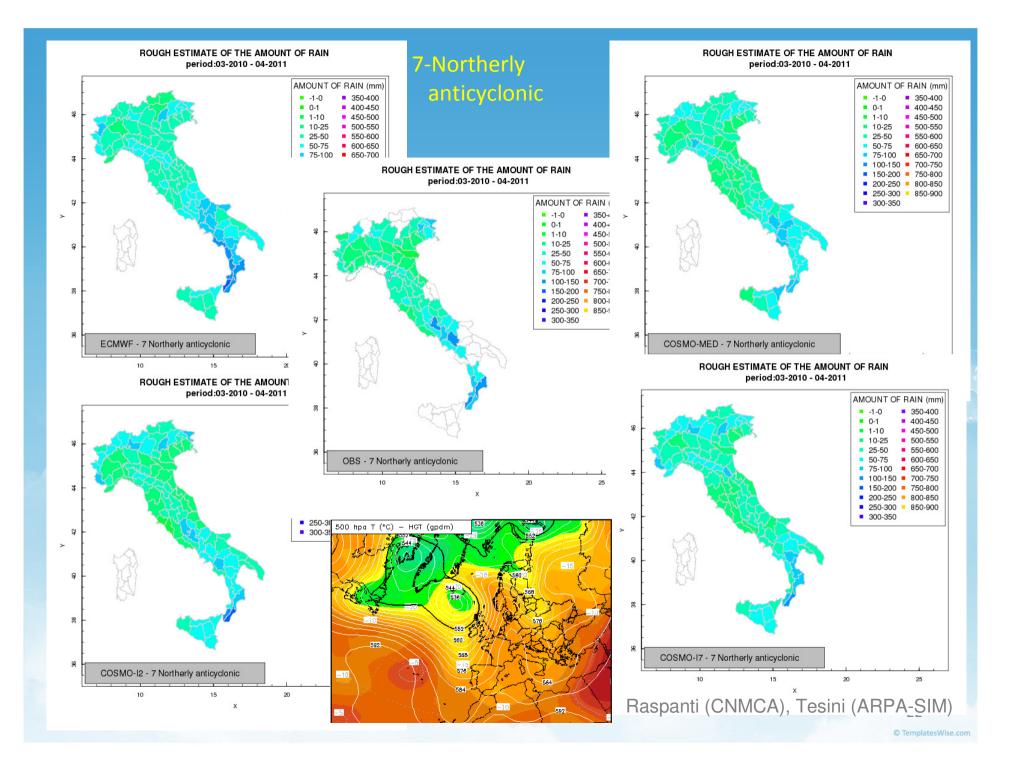
(Elena Oberto, Massimo Milelli - ARPA Piemonte)

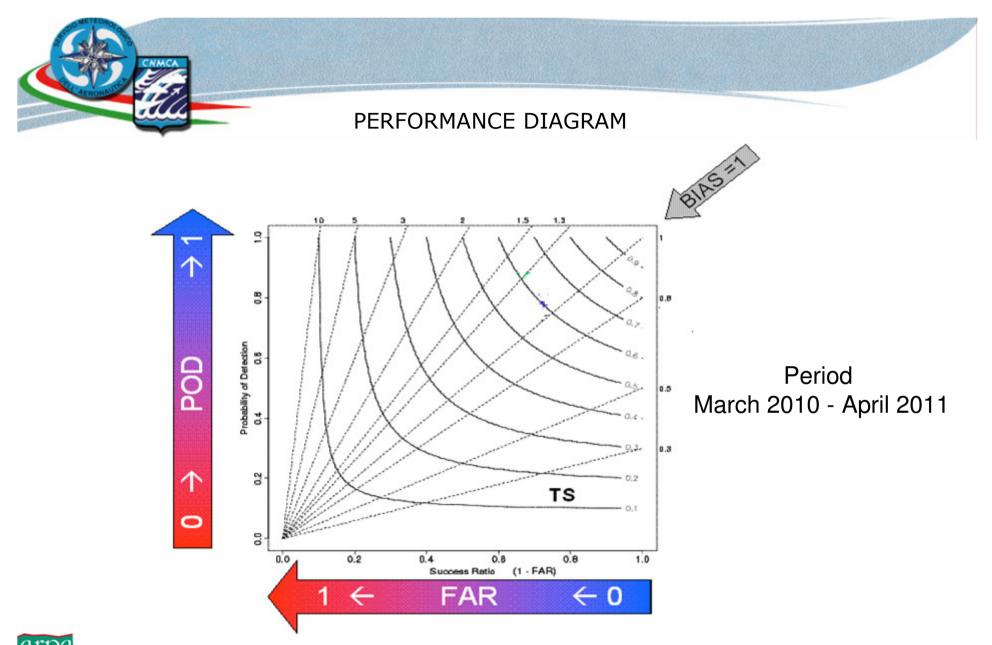
QPF verification of the 4 model versions at 7 km res. (COSMO-I7, COSMO-7, COSMO-EU, COSMO-ME) with the 2 model versions at 2.8 km res. (COSMO-I2, COSMO-IT) and ECMWF

Specifications:

- Dataset: high resolution network of rain gauges coming from COSMO dataset and Civil Protection Department \rightarrow 1300 stations
- Method: 24h/6h averaged cumulated precipitation value over 90 meteo-hydrological basins
- •Model selection: run 00UTC, D+1, D+2

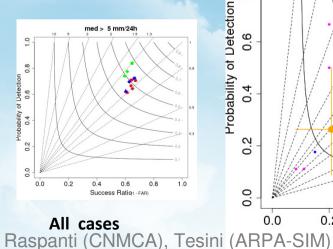

extreme dependency score → investigate the performance of an NWP model for rare events

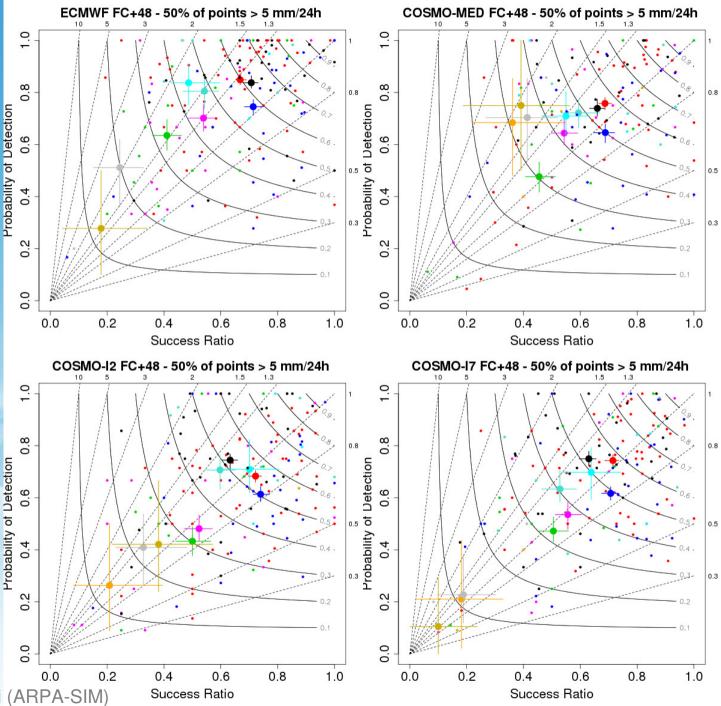



Stephenson et al. Introduce the extreme dependency score (EDS) as a good alternative to standard scores for verification of rare events.

	Event observed yes	Event observed no	Total
Forecast yes	A	b	a + b
Forecast no	С	d	c + d
Total	a +c	b+d	n= a + b + c + d

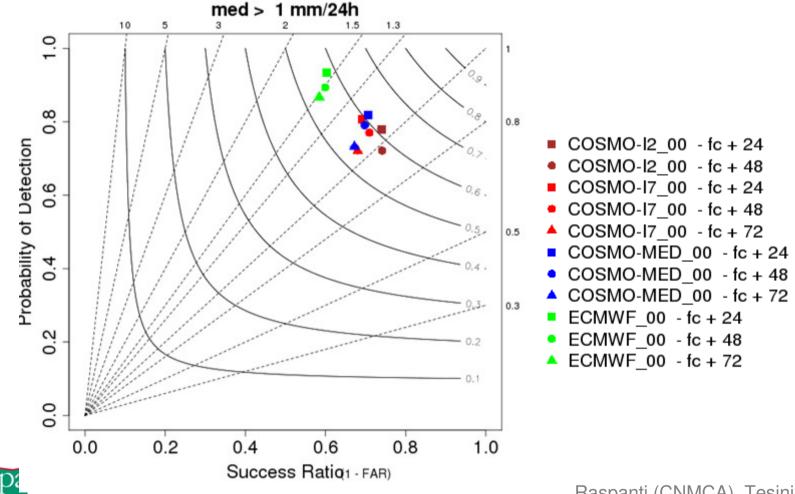
E. Oberto, ARPA-Piemonte



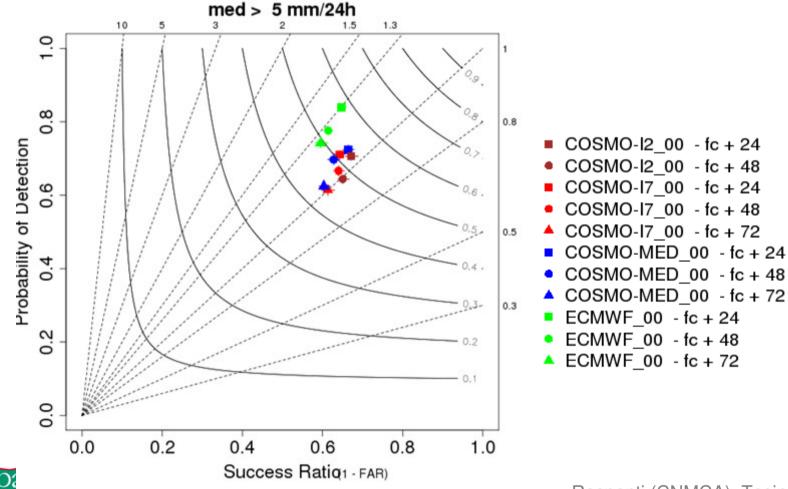

COSMO General Meeting – Roma 05-09 Sept 2011

Small dots = daily scores

Big dots = scores over the days in each category

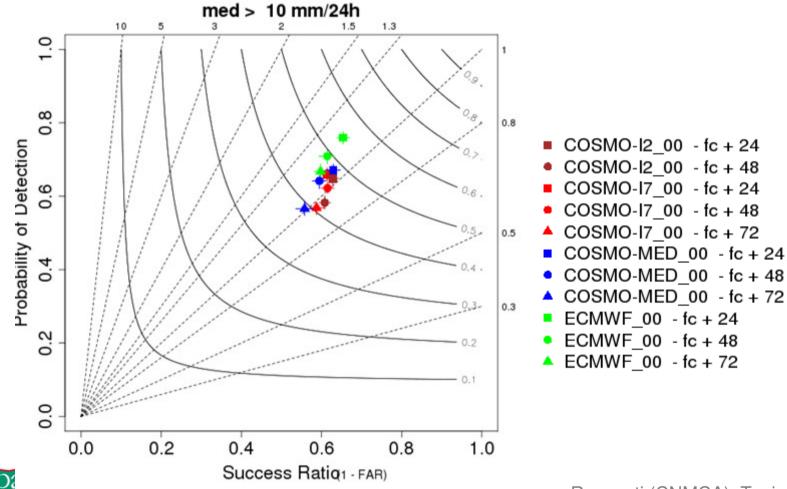

- 1 Zonal Westerly anticyclonic
- 2 Zonal Westerly cyclonic
- 3 Easterly
- 4 Meridional cyclonic
- 5 Meridional anticyclonic
- 6 Northerly cyclonic
- 7 Northerly anticyclonic
- 8 Central Mediterranean High
- 9 Central Mediterranean Ridge
- 10 Central Mediteranean Low
- 11 Central Mediterranean Trough

50% of points (median) > 1 mm/24h


Raspanti (CNMCA), Tesini (ARPA-SIM)

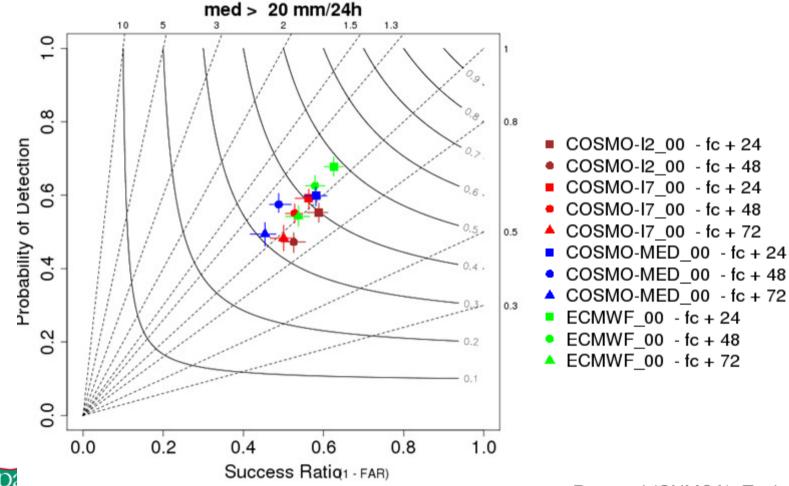
COSMO General Meeting – Roma 05-09 Sept 2011

50% of points (median) > 5 mm/24h


Raspanti (CNMCA), Tesini (ARPA-SIM)

COSMO General Meeting – Roma 05-09 Sept 2011

50% of points (median) > 10 mm/24h


Raspanti (CNMCA), Tesini (ARPA-SIM)

COSMO General Meeting – Roma 05-09 Sept 2011

50% of points (median) > 20 mm/24h

Raspanti (CNMCA), Tesini (ARPA-SIM)

COSMO General Meeting – Roma 05-09 Sept 2011