Twenty-two years of verification from the HIRLAM NWP system

Kalle Eerola
Finnish Meteorological Institute
Contents

• Background
• Short history of HIRLAM at FMI
• Time-series for the years 1990 … 2012
 • Mean sea level pressure, temp. at 925 hPa
• Effect of weather regime (weather type) on scores
• Verification results of monthly precipitation
 • For 2004 … 2012
 • Some preliminary notes
• Summary
Background

• Hirlam forecast systems have been run operationally at FMI since 2 January 1990
• Field verification implemented in July 1990
• Observation verification system operationally since 1995
• Three reasons to verify (Jolliffe and Stephenson 2003):
 • Administrative
 • Scientific
 • Economical
Short history of HIRLAM

• 13 different versions and many smaller changes
• From 2004 onwards RCR: running the official reference system
• Resolution improved:
 • Horizontal: 0.5 deg → 0.07 deg
 • Vertical: 16 levels → 65 levels
 • \(n_x \times n_y \times n_z \)
 • 130 \(\times \) 100 \(\times \) 16 = 208 000
 • 1030 \(\times \) 816 \(\times \) 65 = 56 639 700
 • → ~ 272 times more gridpoints
• Increased computer power has made all improvements possible
• Some milestones in the table
Statistical verification

• Field verification: verifying against the HIRLAM numerical analysis
• Monthly scores for mean sea level pressure (mslp) and Temperature at 925 hPa
• RMS error and bias
• The results will be shown mainly on two areas:
 • **ATLEUR**: Atlantic-European area, largest common area to all FMI HIRLAMs
 • **SCANDI**: Scandinavian area is interesting for us
• Time series from July 1990 to August 2012, over 22 years
• Interpretation of RMS error:
 • A lot of discussion in the literature
 • Favors smooth fields and low resolution
 • Double penalty problem
 • Gives larger weight to large errors (squared)
Results with linear trend

• July 1990 … August 2012
• RMS error and bias for the two areas
• Linear trend
Results with moving average

- 13 months’ moving average
- 2-day forecasts now better than 1-day forecasts 20 years ago
- Improvements not linear

Reasons for improvements?
- Model improvements?
- Weather types (regimes)?

Statistical scores do not tell the reason for improvements

Can the improvements traced back to changes in the forecasting system?
- In some cases yes

Some examples of the reasons for improvements
Improvements in 2006, what happened?

Re-run concept:

- ECMWF lateral boundaries used always
- New: use the analysis of the previous cycle
- ECMWF analysis is superior to HIRLAM analysis
- Re-run the previous cycle
 - Analysis for this is combination of ECMWF and HIRLAM analysis
 - Large-scale structure from ECMWF
 - Preserve small-scale structure from HIRLAM
- Run a short forecast to get the best possible first guess for the current cycle
Negative bias in Scandinavia in winter

Large negative bias in winter in Scandinavia

- Increasing with forecast length
- Very large in the first years
- In last two Januaries large bias
 - Weather regime?
 - HIRLAM system?

- Last two winters: large negative bias → what happens next winter?

- Simo Järvenoja suggested in 2005:
 - Could it be the location of the eastern boundary?
 - Try with different horizontal areas, some extending more east
 - Turbulence scheme?

- We don’t know the reason
- Statistical methods can describe the situation, but not explain the physical reason
Just for orientation
Monthly bias, +48 h, mslp, January 1991-2012
Monthly variability, +48 h, mslp, January 1991-2012
Bias and RMSE, T at 925 hPa
Bias and RMSE, T at 925

- Negative bias in early years
- Many experiments were runs to find the reason
 - The whole lower troposphere was too cold and moist
 - Caused permanent stratus cloud
 - Several corrections were tried
 - Two of them helped
 - Increase of vertical levels from 16 to 31
 - Savijärvi radiation scheme
- Improvement in 2003
 - In bias: negative bias -> slightly positive bias
 - Reduction in RMSE, especially in ATLEUR
 - Most probably due to the introduction of 3DVAR
Effect of weather type on scores in winter

- NAO-index is used widely to classify weather type in the North Atlantic
 - Positive NAO: westerly flow
 - Negative NAO: blocking
- Correlation between NAO and RMSE not very high, but:
 - In 1990’s larger correlation between NAO and RMSE
 - In 2000’s decreases

- Possible reasons for higher correlation in 1990s
 - Smaller horizontal area, boundaries closer
 - No satellite data
 - ECMWF boundaries only once or twice a day
 - No re-run concept

<table>
<thead>
<tr>
<th>Correlation between RMSE of +48 h forecasts and NAO-index in winter</th>
</tr>
</thead>
<tbody>
<tr>
<td>SCANDI mslp</td>
</tr>
<tr>
<td>Z500</td>
</tr>
<tr>
<td>EWGLAM mslp</td>
</tr>
<tr>
<td>Z500</td>
</tr>
</tbody>
</table>
Observed and predicted monthly precipitation

- Some preliminary results
- Observations: rain gauge observations for 2004-2012
- Monthly precipitations sums from HIRLAM forecasts
 - Computed as an accumulation in 6 hours
 - For different forecast lengths:
 - $+0\ldots+6h$, $+6h\ldots+12h$, $+12h\ldots+18h$, ... , $+42h\ldots+48h$
 - Are there differences in different lead times?
 - Spin-up problem?
 - Bias increasing/decreasing with lead time?
Yearly precipitation in Finland

- Normal yearly precipitation amount in Finland
- Some stations for which results will be shown
<table>
<thead>
<tr>
<th>Season</th>
<th>Obs</th>
<th>+0-+6</th>
<th>+6-+12</th>
<th>+12-+18</th>
<th>+18-+24</th>
<th>+24-+30</th>
<th>+30-+36</th>
<th>+36-+42</th>
<th>+42-+48</th>
</tr>
</thead>
<tbody>
<tr>
<td>Winter</td>
<td>43</td>
<td>50</td>
<td>54</td>
<td>55</td>
<td>54</td>
<td>53</td>
<td>53</td>
<td>54</td>
<td></td>
</tr>
<tr>
<td></td>
<td>115</td>
<td>126</td>
<td>127</td>
<td>125</td>
<td>124</td>
<td>125</td>
<td>125</td>
<td>126</td>
<td></td>
</tr>
<tr>
<td>Spring</td>
<td>36</td>
<td>44</td>
<td>51</td>
<td>51</td>
<td>51</td>
<td>51</td>
<td>51</td>
<td>51</td>
<td></td>
</tr>
<tr>
<td></td>
<td>125</td>
<td>144</td>
<td>146</td>
<td>147</td>
<td>147</td>
<td>147</td>
<td>147</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Summer</td>
<td>72</td>
<td>77</td>
<td>84</td>
<td>82</td>
<td>81</td>
<td>78</td>
<td>76</td>
<td>73</td>
<td>71</td>
</tr>
<tr>
<td></td>
<td>108</td>
<td>116</td>
<td>113</td>
<td>113</td>
<td>109</td>
<td>105</td>
<td>102</td>
<td>99</td>
<td></td>
</tr>
<tr>
<td>Autumn</td>
<td>60</td>
<td>59</td>
<td>74</td>
<td>73</td>
<td>73</td>
<td>72</td>
<td>73</td>
<td>73</td>
<td>70</td>
</tr>
<tr>
<td></td>
<td>115</td>
<td>124</td>
<td>123</td>
<td>122</td>
<td>121</td>
<td>123</td>
<td>122</td>
<td>118</td>
<td></td>
</tr>
</tbody>
</table>
What we have in the table?

• **Observed seasonal precipitation (mm)**
• **Different forecast lengths**
• **Predicted precipitation by HIRLAM at different lead times**
• **Predicted precipitation in percents of the observed precipitation**
Seasonal verification, whole Finland

- Spin-up problem:
 - Shortest forecast gives systematically less precipitation at all seasons
- Effect of forecast length
 - There does not seem to be clear systematic increase/decrease for other forecast lengths
Different seasons

• HIRLAM overpredicts the seasonal precipitation
 • In winter and autumn by 20…30%
 • In spring by 40…50%
 • In summer by 10…20%

• Summer
 • More convective precipitation
 • Under-predicts the very large amounts (see later)

• Spring
 • Driest season
 • Overestimates the precipitation almost by 50%

• Winter and autumn similar

• This dataset cannot distinguish heavy and small amounts of precipitation
Northern and southern

- **In southern Finland**
 - More precipitation observed
 - Over-prediction smaller in percents
 - What about mm?

- **In northern Finland**
 - Less precipitation
 - Less over-prediction in percents
 - What about mm?
Monthly time-series from some stations
Monthly time-series from some stations
Summary

- 21 years of Hirlam forecasts have been verified
- 2-day forecasts now better than 1-day forecasts 20 years ago
- Improvements not linear
- In many cases improvements can be traced back to system developments
 - Re-run concept
 - Temperature at 925 hPa, radiation, no of levels
- Some obvious weaknesses remain unexplained
- Less dependent of the weather regime now
- 8 years of HIRLAM monthly precipitations have been verified (preliminary results)
- Spin-up problem in short forecasts
- No clear drift during the forecast
- Over-forecasting in all seasons, especially in spring

Kalle Eerola: "Twenty-one years of verification from the HIRLAM NWP system", accepted to Weather and Forecasting