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Motivation
1. All existing Var, EnKF, and EnVar analysis equations assume that

the effective background-error covariance matrix B is exact. But
this is never the case.

2. EnVar takes a linear combination of static and ensemble covariances
to specify B. This is ad hoc.

3. EnKF and EnVar use an ad-hoc localization. This is not theoretically
optimal.

4. In the Var, EnKF, and EnVar analysis equations, there is no intrin-
sic feedback from observations to background-error statistics. This
requires external adaptation or manual tuning.

The new technique is supposed to mitigate these problems of the exist-
ing approaches.

The proposed paradigm
In words: Acknowledge that B is uncertain and random and update it
along with the state.
Observations for B: both the ensemble and the ordinary observations
contain info on B.

Level Bckg Prior Obs Update
2 Static B0 p(B|B0) Ensm Xe B0 ⇒ B ⇐ Xe, xobs

1 xf or xe p(x|xb) xobs xb ⇒ x ⇐ xobs

Level 2: extension by the new approach.
Level 1: the existing EnVar technique.

Hierarchical Bayes EnVar (HB-EnVar): principle

ppost(x,B) ≡ p(x,B|Xe,xobs) ∝ p(B|B0)p(x|x
b,B)p(Xe|B)p(xobs|x)

where p(B|B0) is the (new) prior pdf for B,
p(x|xb,B) is the traditional background-error distribution,
p(Xe|B) is the (new) ensemble likelihood, and
p(xobs|x) is the traditional observational likelihood.

The goals are:
1) the mode of the joint posterior ppost(x,B) (deterministic analysis).
2) the mean of the marginal posterior ppost(x) (deterministic analysis).
3) a sample from ppost(x) (ensemble analysis).

Ensemble likelihood
p(Xe|B) ∝ |B|−N/2e−

1
2

∑N
k=1 (xe

k−x
b)>B−1(xe

k−x
b),

– no need and no room for approximations.

So, the only term that needs explicit (and careful) specification is the prior
p(B|B0).

The prior pdf for B: square-root Gaussian
We decompose B = WW> and assume that W is a Gaussian random
matrix with pdf

p(W) ∝ e−
1
2 tr[(W−W0)U

−1(W−W0)
>U−1]

Sampling: W = W0 + ΦYΦ>, where Y is the pure-noise matrix, with
N (0, 1) independent entries.

Random samples (matrix rows) from p(B)

Analysis
I. Posterior mode: max ppost(x,B)

II. Importance Sampling: Monte-Carlo estimation of the posterior mean:

1. Draw M samples W+
m from the proposal density q(W).

2. Compute their non-normalized importance weights:

φ′(W+
m) :=

ppost(W
+
m)

q(W+
m)

3. Perform m ordinary analyses xa
m with Bm = W+

m · (W
+
m)>.

4. Average xa
m with normalized importance weights wm:

xa =
M∑

m=1

wm · xa(Bm)
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In the toy problem, the deterministic HB-EnVar analysis outperforms Var,
EnKF, and EnVar.

Conclusions
Main aspects HB-EnVar

• Background-error covariance matrix B is treated as a sparse random
matrix and updated in the optimal scheme along with the state.

• The key issue is the prior distribution of B.

• Ensemble members are treated as observations on the B matrix and
assimilated along with ordinary observations.

• The technique is computationally expensive.

Potential benefits of HB-EnVar

• Optimized hybridization of static and ensemble covariances.

• Optimized combination of xf and xe.

• Optimized covariance localization.

• Optimized feedback from xobs to the B matrix.

• Uncertainty in B is explicitly accounted for in the generation of the
analysis ensemble, resulting in increased spread.


