

Recent development in upper-air COSMO Physics

- ✓ Revision of cloud optical properties
- ✓ Results from monitoring the operational LPI in COSMO-DE

✓ Experiences with the stochastic boundary layer perturbation

- ✓ EDP-forecast for aviation derived from TURBDIFF within ICON
- ✓ Recent verification results of the common TURBDIFF for ICON and COSMO
- $\checkmark\,$ Investigation of the tiling effect on TURBDIFF for the stable PBL

effect of single-precision radiation calculations on results

Testing & Tuning of (Revised Cloud Radiation Coupling) T²(RC)²:

Harel Muskatel, Pavel Khain (IMS) Uli Blahak (DWD) Natalia Chubarova (RHM)

and others

Revised parameterization of optical ice-cloud properties:

In the COSMO radiation scheme (Ritter & Geleyn 1992)

0

- Optical properties of ice-clouds are described crudely and don't include precipitation products

- Effect of inhomogeneity is taken into account by means of a constant reduction factor radgefact=0.5 applied to the mass fractions.
- → New parameterizations of optical properties based on idealized calculations according to Fu
 - Visible-bands: <u>Ray-tracing</u> for randomly orientated hexagonal ice particles (Fu 2007)
 - IR-bands: weighted average of <u>Mie-scattering</u> and related methods (Fu et al. 1998)

Optical properties are treated as functions of effective arguments

effective radius R_{eff} and wave-length
aspect ratio AR

- Arguments deduced from inherent assumptions in terms of particle size distribution N(L), mass size relation m(L) and particle shapes (expressed by L and D):
 - Suitable also for complicated ice particles (bullet rosettes, aggregates with rough surfaces, fractional crystals)
 - Extending particle size range (5μm 300 μm) by using 7000 size-modified Generalized Gamma-Distributions N(L)

Fitting the calculated relations between optical properties and effective arguments

In terms of rational functions using spectral averaging for 8 distinctive spectral bands

<u>Problem</u>: New cloud-radiation scheme depends on 30 parameters!

- Perform idealized COSMO simulations
 - for many parameter combinations
 - and special cloud types

→ Replace attenuation of radiation (in %) by an analytic function (quadratic form) of the parameters (meta-model):

$$R(p_1, p_2, \cdots)$$

scaled dimensionless parameters

ranging from -1 to 1

- → Calculate sensitivity of each parameter p_i : $\partial_{p_i} R$
- List of 8 most sensitive parameters :

Selectors:

- Operational / new scheme
- Include rain, snow & graupel

- most sensitive parameters: automatic tuning by CALMO
- → less sensitive parameters : "expert-tuning"

Real numbers:

- Assumed number concentration of cloud droplets
- Properties of sub-grid water clouds
- Representation of sub-grid variability

Extended effective -Radius R_{eff} calculation for water clouds based on an aerosol-climatology:

Currently:grid scale clouds: R_{eff} is a function mainly of cloud mass fraction q_C sub-gridclouds:using a fixed R_{eff} as a tuning parameterNew:using

- Tegen-climatology: (Tegen et al., 1997), <u>later</u>: prognostic aerosols (COSMO-ART)
 - Optical thickness for 5 aerosol categories:
 - sea-salt, mineral dust, black carbon, organics
 - Assumed specific extinction coefficients
 - Assumed mean particle radius and density
 - Assumed exponential vertical decrease

=> grid-column-integrated aerosol-mass per m⁻²

- = => <u>aerosol number concentration</u> N_{CN}(z) in m⁻³
- cloud-activation parameterization according to Segal/Khain (2006):

convective velocity scale

$\underline{\mathbf{R}}_{eff}$ [µm] distribution as a function of \mathbf{q}_{c} [gm⁻³]

for pure water clouds in all heights (w_{eff} incl. w*):

COSMO radiation with different climatologies against measurements:

Lightning Potential Index derived from COSMO-DE

Ulrich Blahak (DWD)

Concept of the LPI

- → Yair et al. (JGR, 2010), Lynn and Yair (Adv. Geosci., 2010)
- Charge separation in thunderstorms is correlated with the simultaneous presence of updrafts, super-coolded liquid water, graupel and other frozen hydrometeor types ("cloud ice", "snow")
- → This concept was modeled by the authors resulting into a LPI-Index:

COSMO-DE oper. forecast 28.5.-31.5.2016, combined 00 UTC runs until vv=23 h

Boundary layer perturbations for convection triggering in COSMO-DE

Ulrich Blahak² (DWD), Kirstin Kober¹ (LMU)

¹ Original inventor ² Implementation and testing at DWD

Matthias Raschendorfer

The method

- perturbed physical tendencies within ABL dependent on turbulent variances
- aiming to reflect unresolved effects in variability of surface fluxes on <u>convection initiation</u>

• from **TRUBDIFF**

- modif. By U. Blahak:
 - 0, above BLH
 - maximal BL-value below

<u> For :</u>

- temperature
- specific humidity
- vertical velocity

- 2D-field of Gussian random numbers, folded by a Gaussian smoothing kernel to generate spatially coherent patterns.
- It **is updated every 10 minutes** (approximate eddy turnover time in shallow convection).
- The spatial width of the kernel is specified as a multiple of horizontal grid length Δx .
- According to **Teixeira and Reynolds** (2004), described in **Kober, Craig et al.** (2015)

not yet effective for triggering more convective precipitation!

G

Eddy Dissipation Rate (EDR) forecasting derived from **TURBDIFF** - Global Validation with ICON -

Matthias Raschendorfer, Axel Barleben, Tobias Göcke, Ekaterina Machulskaya

(all DWD)

Matthias Raschendorfer

EWGLAM/SRNWP Rome 2016

Effect of Convection as additional TKE source:

Tobias Göcke, Ekaterina Machulskaya

Revision of the combined turbulence- and SAT-scheme TURBDIFF for ICON and COSMO:

Matthias Raschendorfer (DWD)

- In block-data structure and with stronger modularization
- Generalized semi-implicit vertical diffusion (also for non-gradient fluxes)
- One additional STIC-term active (due to separated SGS horizontal shear circulations)
- Increased shear –production of TKE by STIC-terms also considered for Ri-number
- Less restrictive prevention of possible singularities
- Application of some first empirical hyper-parameterizations (by Günther Zängl):

Some parameters of the scheme formulated as a function of model-state variables:

e.g. "minimal diff-coeff" = fnc ("Ri-number", "height above ground")

- Complete moist physics applied to surface level (including turbulent cloud diagnostics)
- Near-surface interpolation of vertical profiles in conserved variables
- Zero-concentration condition for qi and qc at the surface (e.g. impaction of fog)

<u>Upper air verification with COSMO-DE for June 2016:</u>

RMSE

Mean Error

Near surface verification with COSMO-DE for June 2016:

10m-wind : only small differences

upper air-wind : indifferent variations

Subgrid scale thermal surface heterogeneity treatment in the turbulence scheme for stable PBL

Ines Cerenzia^{1,2} Ekaterina Machulskaya³

¹ University of Bologna, Italy
² Arpae-Emilia Romagna SIMC, Italy
³ Deutscher Wetterdienst, Germany

Idealized simulation of the stable BL above thermal surface patterns:

Experimental setup:

- simulation with COSMO-Single-Column
- representing column above a 400X400m² idealized flat surface
- with 100X100m² checker board elements (of \(\Delta T_S=6K\) after 8h)
- using TURBDIFF (with):
 - surface tiling (2Tiles),
 - a **STIC**-term for thermal driven near surface circulations (Tcirc)
 - progn. scalar variances (SV), (with) Var(T_S) as lower BC (SBC)
- COSMO-LES: 3.125 m horizontal resolution

- patterns of T_S even sharpen decoupling of surface
- already represented by tiling
- > non-linearity of "flux=K*grad(T)" dominates against extra mixing by thermal circulations
- Tcirc is a thermal SSO-term and (in contrast) produces MORE mixing. It should <u>not</u> be active at flat surfaces!

Physical Process in COSMO			Method		Name	Authors	
Local Parameteriz. of atmospheric source terms	Radiation Transport		δ two-stream; revised optical cloud ↑ properties		Ritter and Geleyn (1992) Blahak (->)		
	Microphysics		1-moment; 3 prognostic ice phases; prognostic rain and snow		Doms (2004) Seiffert (2010)		
			optionally 2-moment version				
Grid-scale Parameteriz. of sub-grid scale atmospheric processes (dependent on horizontal resolution)	any other not yet considered process (e.g. SSO driven thermal circulations or horizontally propagating GW)						
	Convection	deep	2-class (updraft-downdraft) mass-flux		Tiedke (1989), update by Bechthold et al. (2008) optionally		
		shallow	equations with moisture convergence closure and simplified microphysics				
	Sub-grid Scale Orography (SSO) effects		orographic blocking and breaking of vertically propagating Gravity Waves (GW)		Lott and Miller (1997)		
	→ Quasi-Isotropic → Turbulence		2-nd order closure; progn. TKE with addit. scale-interaction terms (STIC); horizont. BL-approx. with opt. 3D- extensions; turb. sat adjustm.		TURBDIFF	Deceberrelerter	
	Surface-to- → Atmosphere Transfer → and Roughness Layer effects		transfer resistances based on constant turbulent /laminar diffusion fluxes normal to roughness-covering surfaces; separate heat budget of roughness elements (shading)	not yet tiled	TURBTRAN	(2001,->)	
Modelling the ↓ Non- atmospheric part below the surface			↓		TERRA		

CONSORTIUM FOR SMALL SCALE MODELING

M O

S

Physical Process in COSMO			Method		Name	Authors	
Local	Radiation Transport		δ two-stream; revised optical cloud properties		Ritter and Geleyn (1992) Blahak (->)		
Parameterizations of atmospheric source terms	Microphysics		1-moment; 3 prognostic ice phases; prognostic rain and snow		Doms (2004) Seiffert (2010)		
^			optionally 2-moment version				
Grid-scale Parameterizations of sub-grid scale atmospheric	any other not ye	et considered	process (e.g. SSO driven thermal circulations or horizontally propagating GW)				
	0	deep	2-class (updraft-downdraft) mass-flux equations with moisture convergence closure and simplified microphysics		Tiedke (1989), update by Bechthold et al. (2008) optionally		
	Convection	shallow					
	Sub-grid Scale Orography (SSO) effects		orographic blocking and breaking of vertically propagating Gravity Waves (GW)		Lott and Miller (1997)		
(dependent on	Quasi-Isotropic Turbulence		2-nd order closure; progn. TKE with addit interaction terms (STIC); horizont. BL-ap with opt. 3D-extensions; turb. sat adj	:. <mark>scale-</mark> pprox. justm.	TURBDIFF		
resolution)	Surface-to-Atmosphere Transfer and Roughness Layer effects		transfer resistances based on constant turbulent /laminar diffusion fluxes normal to roughness-covering surfaces; separate heat budget of roughness clements (shading)		TURBTRAN	Raschendorfer (2001,->)	
↓	Vertical Heat and Water Transport of the Soil including Vegetation and a Snow-cover		1- layer snow; m layer soil; freezing of soil water; resistances for vapor from stomata of leaves and soil pores; moisture and root mass dep. conduct.; coupled with roughness-layer concept	not yet tiled	TERRA	Heise and Schrodin (2002), Schulz (2016, ->), Helmert (- >), Raschendorfer (->)	
atmospheric part below the surface			optional mlayer snow		Maschulskaya (->)		
	Heat Transport and Phase Change of Lakes Heat Transport and Amount of Sea Ice		1-layer with an assumed shape function of temperature profiles; including freezing of lake water and a possible snow-cover		FLAKE	Mironov (2008)	
1	DW	D	CONSORTIUM FOR SMALL SCALE MODELING				

5

N/

Calling frequency of radiation code computational cost

40

20

0 L 0

10

%

Additional CPU time

clear sky 20 30 40 50 60 Temporal resolution [min]

00Z+10h 00Z+34h

00Z+58h