

Current activity in upper-air COSMO Physics

- ✓ Revision of cloud optical properties:
 - Sub-grid cloud effects and CAMS-aerosol climatology
- ✓ Towards an operational dust-forecast
- ✓ About applications of the STIC-approach in ICON:
 - Operational CAT-forecast for aviation based on EDR from TURBDIFF

Note:

 We are compiling a <u>common physics package</u> for the quadrilateral LAM COSMO and the new icosahedral global model ICON (also applicable as a LAM):

<u>Still different</u> are:	<u>COSMO</u> :	<u>ICON</u> :
Radiation scheme	Ritter/Geleyn	RRTM
Convection scheme	Tiedke already.implemented.in COSMO, but not operational	Tiedke/Bechthold

Physical Process in COSMO		Method		Name	Authors	
Local	Radiation Transport		δ two-stream; revised optical cloud properties		Ritter and Geleyn (1992) Blahak (->)	
Parameteriz. of atmospheric	Microphysics		1-moment; 3 prognostic ice phases; prognostic rain and snow		Doms (2004) Seiffert (2010)	
			optionally 2-moment version			
····;	any other no	ot yet (comp	oletely) considered process (e.g. SSO driven thermal circulations or horizontally propagating GW)			
	Convection	deep	2-class (updraft-downdraft) mass	1	Tiedke (1989),	
		shallow	equations with moisture convergence closure and simplified microphysics		update by Bechthold et al. (2008) optionally	
Grid-scale Parameteriz. of sub-grid scale Grid-scale Sub-grid Scale Orography (SSO) effects		orographic blocking and breaking of vertically propagating Gravity Waves (GW)		Lott and Miller (1997)		
atmospheric processes (dependent on horizontal resolution)	Quasi-Isotropic Turbulence		2-nd order closure; progn. TKE with addit. scale-interaction terms (STIC); horizont. BL-approx. with opt. 3D- extensions; turb. sat adjustm.		TURBDIFF	
	Surface-to- Atmosphere Transfer and Roughness Layer effects		transfer resistances based on vertically constant turbulent/laminar near-surface fluxes normal to roughness-covering surfaces; separate heat budget of roughness elements (shading)	not yet tiled in C	TURBTRAN	Raschendorfer (2001,->)
Modelling the Non- atmospheric part below the surface	Modelling the Non- atmospheric part below the surface		O S M O		TERRA	
Deutscher Wetterdienst Wetter und Klima aus einer Hand						

Deutscher Wetterdienst Wetter und Klima aus einer Hand

effect of single-precision radiation calculations on results

Testing & Tuning of (Revised Cloud Radiation Coupling) T²(RC)²:

Harel Muskatel, Pavel Khain (IMS) Uli Blahak (DWD) Natalia Chubarova (RHM)

and others

Operational state of cloud-treatment for radiation :

- Operational cloud-treatment in radiation scheme (Ritter & Geleyn 1992) of COSMO:
 - Concentrations of cloud-water are a low-sophisticated combination of grid scale micro-physics
 - o grid-scale saturation adjustment for liquid water content (LWC) $\rho_c = q_c \cdot \rho$
 - grid scale 1-moment box-scheme for <u>ice water</u> content (IWC) $\rho_i = q_i \cdot \rho$

and **additional diagnostics** considering also **sub-grid scale generation of cloud-water** using a temperature dependent ice/liquid-ratio, separately for

- grid-box fraction <u>occupied by convective clouds</u> (derived from convection scheme)
 - with a fixed cloud-water concentration
- o (more stratiform) grid-box complement where <u>only turbulence causes heterogeneity</u>, either
 - based on **relative humidity** (operational) or
 - based on turbulent saturation adjustment (statistical scheme, also used in moist turbulence)
- Optical depth τ of <u>liquid-clouds</u> is calculated based on constant effective radius $R_{eff} = 5 \mu m$
 - An additional effect of inhomogeneity in the expression of τ is taken into account by means of a constant reduction factor $K_{het}=0.5$ applied to the mass fraction q_c .
- Optical depth of <u>aerosols</u> (AOD) is taken from old Tanre (1983) climatology.
- Optical properties of ice-clouds

```
extinction coeff. \beta_{ext} , single scattering albedo ~~ asymmetry factor ~ g , delta-transmission factor f_{d}
```

are described only crudely and don't include precipitation products.

<u>Revised parameterization of optical ice-cloud</u> properties (already from last year):

Already from last year:

- New parameterizations of ice cloud optical properties based on idealized calculations according to Fu
 - Visible-bands: <u>Ray-tracing</u> for randomly orientated hexagonal ice particles (Fu 2007)
 - **IR-bands**: weighted average of <u>Mie-scattering</u> and related methods (Fu et al. 1998)

- 0	ptical properties a	re treated as	s functions of effe	ective arguments
0	effective radius	R _{eff}	and wave-length	,
0	aspect ratio	AR	and wave-length	

- Arguments deduced from inherent assumptions in terms of particle size distribution N(L), mass size relation m(L) and particle shapes (expressed by L and D):
 - Suitable also for complicated ice particles (bullet rosettes, aggregates with rough surfaces, fractional crystals)
 - Extending particle size range (5μm 300 μm) by using 7000 size-modified Generalized Gamma-Distributions N(L)

Fitting the calculated relations between optical properties and effective arguments

• In terms of rational functions using spectral averaging for 8 distinctive spectral bands

Extended effective Radius R_{eff} calculation for liquid-water clouds based on an aerosol-climatology:

New:

=> grid-column-integrated

 $N_{CCN}(z)$ in m⁻³

aerosol-mass per m⁻²

=> aerosol number concentration

convective

velocity scale

- Aerosol-climatology from Tegen (et al., 1997), Kinne (2013), or CAMS-ECMWF (later: prognostic aerosols: COSMO-ART and ICON-ART)
 - Optical thickness for 5 aerosol categories:
 - sea-salt, mineral dust, black carbon, organics

Already from last year (Uli Blahak, DWD):

- Vertical profiles of mean effective radius:
 - Assumed specific extinction coefficients \bigcirc
 - Assumed mean particle radius and density Ο
 - Assumed exponential vertical decrease Ο
 - aerosol number concentration
 - effective updraft wind speed:

=> <u>effective radius</u>:

valid for cloud water q_c composed by all scales

Combined parameterization of LWC, R_{eff} and K_{het} for convective clouds:

Pavel Khain, IMS

New:

- Parameterized vertical profiles derived from LES-simulations with System of Atmospheric Modelling (SAM, Khairoutinov ad Randell, 2003): dx=100m, dt=1s, 40 levels, domain of 12.8X12.8X5.1 Km³
 - Spectral-bin microphysics (Khain et al. 2013) with 33 mass bins for droplets (radii from 2µm to 3.2mm) to simulate warm processes
 - **Different size distributions of aerosols** (100 to 5000 CCN cm⁻³)
 - Applied to **BOMEX case** (trade wind cumulus cloud field) with different inversion heights

Parameterization strategy:

- Assuming **homogeneous mixing** (de- and entrainment):
 - Droplet size ~ R_{eff} horizontally almost constant
 - But horizontally varying NC and (with it) LWC
- Using: LWC ~ NC $\cdot R_{eff}^3$ and LES-results as foundation of parameterizations:
 - Expressing virtual vertical profiles of LWC and R_{eff} related to adiabatic lifting of air at cloud base (with invariant NC)
 - > Parameterizing reduction of mean NC with height due to wash-out by rain
 - > Parameterizing reduction of R_{eff} with height compared to adiabatic profile due to mixing
 - ♦ Calculating vertical profiles of \underline{R}_{eff} , mean NC and hence also of mean LWC
 - Parameterizing <u>vertical profiles of K_{het}</u>

* Calculating vertical profiles of mean optical depth τ according to definition

Example of simulation results for 5000 CCN cm⁻³:

taken from Pavel Khain, IMS

• Still missing so far:

- Improved <u>combination with turbulent cloud generation</u>
- Improved consideration of <u>ice-clouds generated by sub-grid scale processes</u>
- Improved estimation of <u>convective cloud-cover</u>
- Parameterization of <u>cloud overlap</u>
- Consistency with corresponding microphysics in (shallow) convection scheme

Harel Muskatel, IMS

CAMS prognostic aerosols

Atmosphere Monitoring

itype_aerosol = 4

- Built on the ECMWF NWP system with additional prognostic aerosol variables
- Input aerosols analysis:
 - NASA/MODIS Terra and Aqua Aerosol Optical Depth at 550 nm
 - NASA/CALIOP CALIPSO Aerosol Backscatter
 - > AATSR, PMAP, SEVIRI, VIIRS
- Verification based on AERONET (text adapted from Benedetti CUS2016)

Global radiation and AOD – model vs. Observations

- 2 months in summer Jun-Aug 2017 twice a • day
- **10** measurement stations (GR, T, Tmax)
- 2 AEORNET station in Sede-Boker & Technion (AOD)
- 2 models: COSMO 2.8km 5.0 (driven by IFS):
 - Oper. rad. scheme + Tanre
 - New rad. Scheme + CAMS
- **CAMS** data taken from 12h before

- **BMSE for AOD and GR** 0 better with CAMS as well
- T2m slightly better 0

Photovoltaikertragsreduktion durch Saharastaub

PerduS: Aims of the Project

Vanessa Bachmann, Andrea Steiner, Jochen Förstner (DWD)

& the PerduS-Team

- Improvement of the photovoltaic power forecast during Saharan dust outbreaks on a regional and national scale
- Application and further development of the model system ICON-ART
 - Dust emission
 - Optical properties of mineral dust
 - Washout of mineral dust

6

- Parameterization for the soiling of PV panels
- Quasi-operational forecasting system for mineral dust dispersion

All data: min: 0.000, max: 1.887, avg: 0.033 Plotted area: min: 0.001, max: 1.887, avg: 0.166

DUST AOD - Comparison with AERONET Stations (Level 1.5)

Deutscher Wetterdienst Wetter und Klima aus einer Hand

<u>Separated TKE-equation with Scale-Interaction sources (M. Raschendorfer) :</u>

Formal <u>scale separation</u> automatically produces <u>Scale-Interaction</u> (SI) between GS parameterization of <u>turbulence</u> (TURBDIFF) and <u>non-turbulent</u> <u>circulations</u>

Matthias Raschendorfer

 STIC-terms allow for a physical based solution of the turbulence scheme, where direct gridscale TKE-production is negligible, due to impact of non-turbulent SGS circulations:

 SBL with vanishing vertical wind shear: 	dTKEcrc	
\circ Above the BL and within the stable stratosphere:	dTKEshs	←→ CAT
 Above the BL close to convective plumes: 	dTKEcon	← CAT, CIT
 Within the BL close to SSO-wakes: 	dTKEsso	 ←→ CAT

• Still to be done:

- Testing <u>direct physically based <u>horizontal diffusion</u> by <u>SHS</u> (probably missing when running numerical schemes with <u>small implicit diffusion</u>) and <u>addit. direct vertical diffusion</u> by <u>CRC</u>
 </u>
- Introducing a more sophisticated formulation of SSO-induced CRC
- <u>Scale adaptive</u> (shallow) **CON** with <u>SI-terms from turbulence</u> (describing de- and entrainment)
- Operational turbulence forecast based on EDR:

Tuning and verification of EDP

- Verification data from <u>hourly</u> EDP measurements have been collected by airliners over the USA in 2015 (whole year).
- Each record includes: observation time, geographical coordinates, flight level, and Eddy Dissipation Rate.
- All together there are ca. 2.5 Mio records.

Ekaterina Machulskaya & Tobias Göcke

German Weather Service

Verification results (ROC)

The Receiver Operating Characteristic (ROC) Curve is widely used for the evaluation of quantities for which it makes sense to use <u>thresholds</u>.

Verification results (ROC)

Pure prognostic EDP already performs better than traditional Ellrod Index (mainly based on HSH)

Consideration of post-processed **dTKEcon** and an **transformation** provides significant improvement

The **transformed** EDP with post-processed **dTKEcon** and an **additional post-processed dTKEshs** <u>performs best</u> and shows a clear and reasonable **optimal uncertainty radius of about 40Km!**

This configuration is operational in ICON since July 2017!

Some other promising general activity:

(still basic research, not yet implemented, partly not even really started)

- Turbulence-Interaction with Micro-Phys. beyond pure saturation adjustment:
 - Consideration of <u>turbulent statistics in MP</u>

Axel Seifert

 Deriving <u>missing correlations between model variables and MP-source-</u> terms in 2-nd order budgets for turbulence

Dimitrii Mironov, Axel Seifert

- Increasing the range of scales included to turbulence closure:
 - <u>coherent structures</u> with <u>skewed distributions</u>, TKESV

Dimitrii Mironov, Ekatarina Maschulskaya

- Dealing with statistical parameterizations
 - substituting intended model-parameters to reduce systematic model errors

staff from ICON or special projects at DWD (renewable energy)

- Developing stochastic BL perturbations
 - simulating the not closed <u>remaining stochastic discretization error</u>

Kirstin Kober George Craig (Uni Munich)