

The NWP Test Suite, a COSMO tool for quality assurance

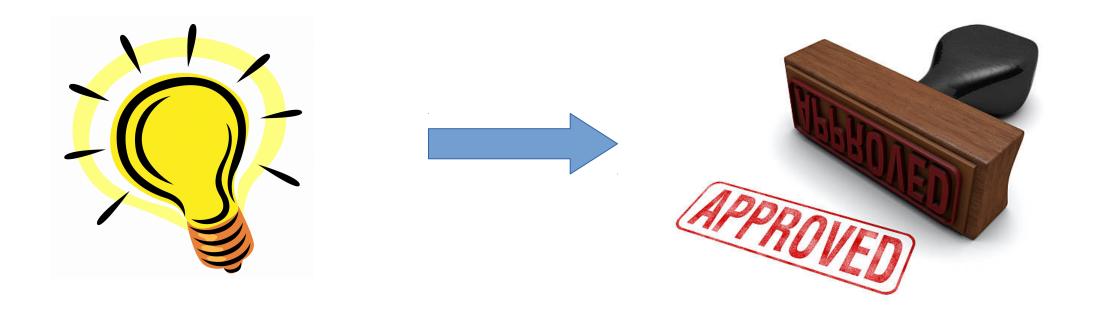
<u>Massimo Milelli</u> and the NWP TS team: Montani, Gofa, Iriza, Bogdan

04/10/2017 – 39th EWGLAM and 24th SRNWP Meeting, Reading

- Quality check
- Goal of the meteorological suite
- Suite setup
- Verification setup •
- Verification examples
- Next steps •

ha Nazional

• Quality check


- Goal of the meteorological suite
- Suite setup
- Verification setup
- Verification examples
- Next steps

dell'Ambiente

A few words about the standard process of software development, from the initial idea to the final release of a new version

ia Naziona otezione

• first decision → SMC (Scientific Management Committee)

idea → developer(s)

- first decision → SMC (Scientific Management Committee)
- development \rightarrow according to proper coding standards
 - the source code provided conforms to the coding rules
 - All source code modifications are documented
 - all changes have been tested. The results are published appropriately
 and the second sec
 - ${}^{\scriptscriptstyle\checkmark}$ a Code Responsible Person is available in the future

idea → developer(s)

- first decision → SMC (Scientific Management Committee)
- development \rightarrow according to proper coding standards
 - the source code provided conforms to the coding rules
 - all source code modifications are documented
 - all changes have been tested. The results are published appropriately
 - A Code Responsible Person is available in the future
- second decision \rightarrow SMC

- first decision → SMC (Scientific Management Committee)
- development \rightarrow according to proper coding standards
 - the source code provided conforms to the coding rules
 - all source code modifications are documented
 - all changes have been tested. The results are published appropriately
 - A Code Responsible Person is available in the future
- second decision \rightarrow SMC

If "no" then

idea → developer(s)

- first decision → SMC (Scientific Management Committee)
- development \rightarrow according to proper coding standards
 - the source code provided conforms to the coding rules
 - all source code modifications are documented
 - all changes have been tested. The results are published appropriately
 - A Code Responsible Person is available in the future
- second decision \rightarrow SMC
- official implementation \rightarrow SCA (Source Code Administrator)

idea → developer(s)

- first decision → SMC (Scientific Management Committee)
- development \rightarrow according to proper coding standards
 - the source code provided conforms to the coding rules
 - all source code modifications are documented
 - all changes have been tested. The results are published appropriately
 - A Code Responsible Person is available in the future
- second decision \rightarrow SMC
- official implementation → SCA (Source Code Administrator)
- standard Technical Test Suite ***

*****Technical Test Suite**

- independence of processor configurations (MPI and OpenMP for parallel code)
- reproducibility of results with older versions (if applicable)
- restart functionality
- I/O with Grib/NetCDF
- tests with array bound checking
- possibility to run with input data from different models (ICON, IFS, ERA, etc.)
- timings / efficiency / scalability
- portability

- first decision → SMC (Scientific Management Committee)
- development \rightarrow according to proper coding standards
 - the source code provided conforms to the coding rules
 - all source code modifications are documented
 - all changes have been tested. The results are published appropriately
 - A Code Responsible Person is available in the future
- second decision \rightarrow SMC
- official implementation → SCA (Source Code Administrator)
- standard Technical Test Suite

If "no" then

idea → developer(s)

- first decision → SMC (Scientific Management Committee)
- development \rightarrow according to proper coding standards
 - the source code provided conforms to the coding rules
 - all source code modifications are documented
 - all changes have been tested. The results are published appropriately
 - A Code Responsible Person is available in the future
- second decision \rightarrow SMC
- official implementation → SCA (Source Code Administrator)
- standard Technical Test Suite
- Meteorological (NWP) Test Suite

- first decision → SMC (Scientific Management Committee)
- \bullet development \rightarrow according to proper coding standards
 - the source code provided conforms to the coding rules
 - all source code modifications are documented
 - all changes have been tested. The results are published appropriately
 - A Code Responsible Person is available in the future
- second decision \rightarrow SMC
 - official implementation → SCA (Source Code Administrator)
 - standard Technical Test Suite
 - Meteorological (NWP) Test Suite

idea → developer(s)

- first decision → SMC (Scientific Management Committee)
- development \rightarrow according to proper coding standards
 - the source code provided conforms to the coding rules
 - all source code modifications are documented
 - all changes have been tested. The results are published appropriately
 - A Code Responsible Person is available in the future
- second decision \rightarrow SMC

na Nazional rotezione

- official implementation → SCA (Source Code Administrator)
- standard Technical Test Suite
- Meteorological (NWP) Test Suite

• STC (Steering Committee) approval

- Quality check
- Goal of the meteorological suite
- Suite setup
- Verification setup
- Verification examples
- Next steps

dell'Ambiente

- to perform carefully-controlled and rigorous testing, including the calculation of verification statistics, for any COSMO model test-version
- to offer necessary information on the **model forecasting performance**
- to facilitate the decision about the **upgrade** of a model test version to a new official release
- to evaluate the **impact** that all implemented numerical or physical processes have on the model
- to provide the COSMO community with standards against which the impacts of new developments in the model should be evaluated

- Quality check
- Goal of the meteorological suite
- Suite setup
- Verification setup
- Verification examples
- Next steps

dell'Ambiente

Agenzia Regionale per la Protezione Ambientale

stema Nazionale

per la Protezione dell'Ambiente

COSMO@7p0: ie_tot = 745 ; je_tot = 569; 40 ML; dlon = dlat = 0.0625 (7 km); fc+72h COSMO@2p8: ie_tot = 1799 ; je_tot = 1369; 50 ML; dlon = dlat = 0.025 (2.8 km); fc+48h

- both initial and boundary (forecast) conditions are provided by IFS HRES
- as for observations, synop reports from a domain covering most of Europe and the Middle East are used (about 3600 stations x day)
- output fields are stored and provided to the verification software (also installed at ECMWF) for the comparison of the 2 model versions by the computation of scores and plots at both resolutions
- verification period: January and July 2013
- special project (Germany, Italy and Greece) for BU (2013-2015, 2016-2018)
- final report published on the COSMO web page

* 4		Resources allocated	Resources used (up to 2 releases per year)
Ę	High Performance Computing Facility	5000000 BU	~4800000 BU
Da	ata storage capacity	1 Tb	~0.7 Tb
		BU average usage per d	ay
	INT2LM for IFS 1	to COSMO-7km, ~40 BU	per day up to +72h
	COSMO	-7km, ~4000 BU per day	up to +72h
IN	IT2LM for COSMO-7	km to COSMO-2.8km, ~30	0 BU per day up to +48h
Z	COSMO-2	2.8km, ~35000 BU per day	y up to +48h
Agenzia Regionale Protezione Ambientale	Cistema Nazionale per la Protezione dell'Ambiente	04/10/2017 – 39	9 th EWGLAM and 24 th SRNWP Meeti

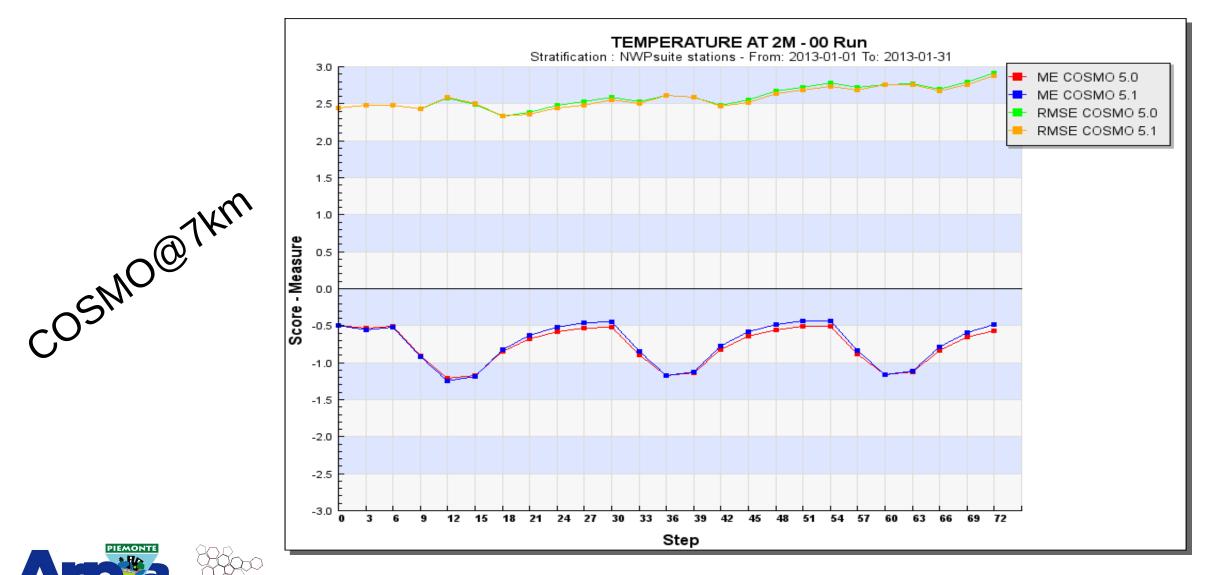
- Quality check
- Goal of the meteorological suite
- Suite setup
- Verification setup •
- Verification examples
- Next steps

dell'Ambiente

surface continuous parameters (2mT, Dew Point T, WindSp, TCC, MSLP): BIAS, RMSE – up to +72h for COSMO-7km, up to +48h for COSMO-2.8km

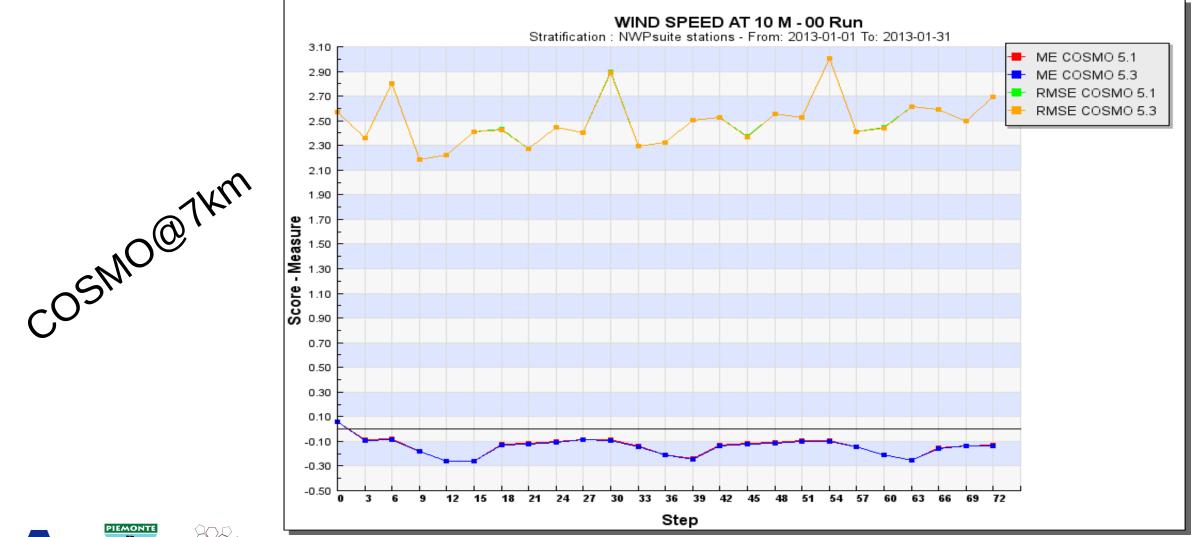
precipitation (6h, 12h, 24h) for selected thresholds (greater than 0.2, 0.4, 0.6, 0.8, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 16, 18, 20, 25, 30 mm): ETS, FBI, Performance diagrams – up to +72h for COSMO-7km, up to +48h for COSMO-2.8km

upper air parameters (T, RH, WindSp for selected pressure levels, i.e. 250., 500., 700., 850., 925., 1000 hPa): BIAS, MAE, RMSE – up to +72h for COSMO-7km, up to +48h for COSMO-2.8km


- Quality check
- Goal of the meteorological suite
- Suite setup
- Verification setup
- Verification examples
- Next steps

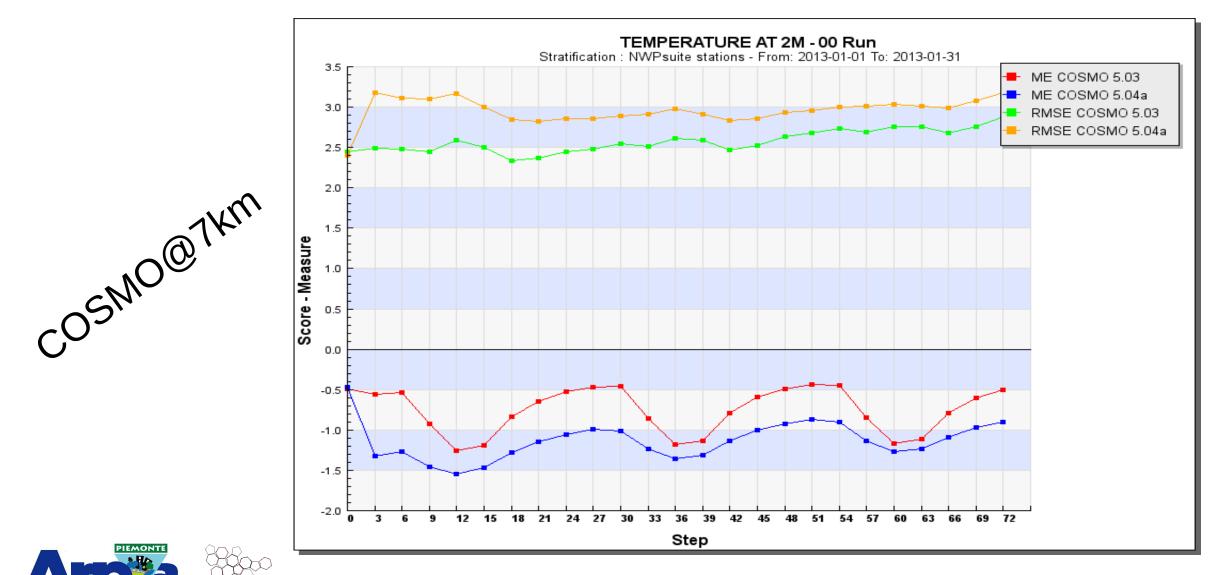
dell'Ambiente

COSMO v5.1 vs v5.0



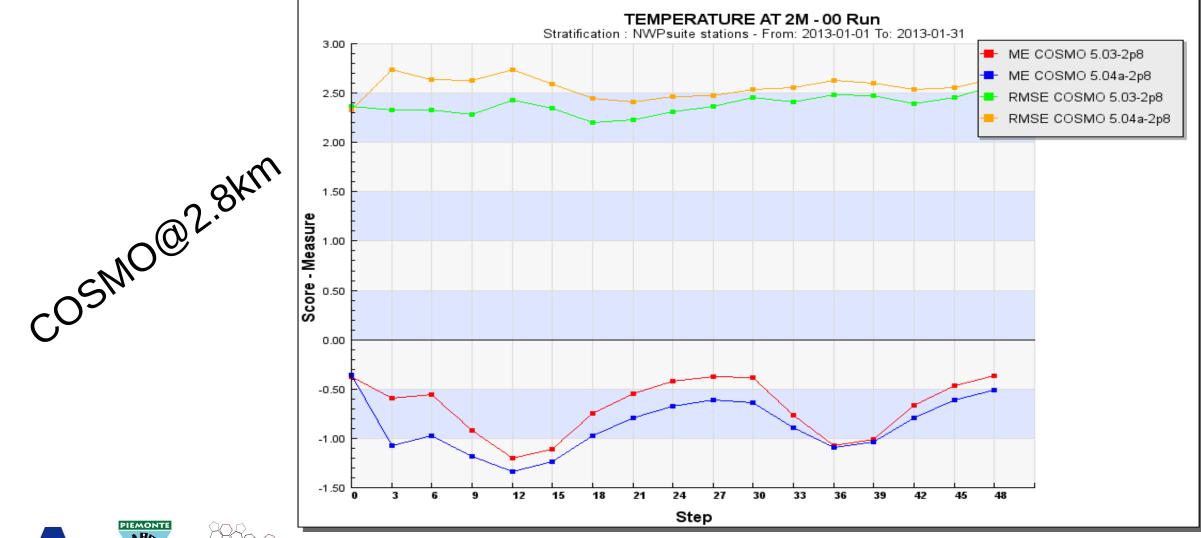
Cistema Nazionale per la Protezione dell'Ambiente

COSMO v5.3 vs v5.1



eistema Nazionale per la Protezione dell'Ambiente

COSMO v5.4 vs v5.3



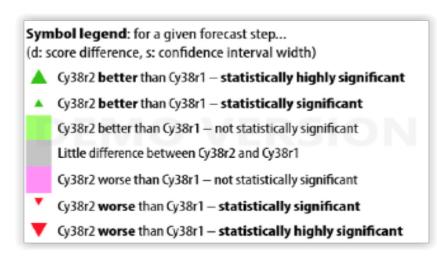
Cistema Nazionale per la Protezione dell'Ambiente

COSMO v5.4 vs v5.3

Stema Nazionale

dell'Ambiente

- Quality check
- Goal of the meteorological suite
- Suite setup
- Verification setup
- Verification examples
- Next steps



- trying to understand why v5.4 performances are worse compared to v5.3
- runs in <u>single precision</u> to save BU
- introduction of statistical significance (bootstrap) as differences are often marginal
- possibility to add a <u>unified score</u> (combining the performance of various parameters)
- introduction of a <u>Score Card</u>

Domain	Parameter		Anomaly correlation RMS error Forecast day Forecast day																			
		Level																				
			1	2	3	4	5	6	7	8	9	10	1	2	3	4	5	6	7	8	9	10
	Relative humidity	300hPa																	۲			
		700 hPa											٠									
	Temperature	100 hPa											▲	۸		▲						
		500 hPa											۸									
		850 hPa											▲									
		1000 hPa											۲									
Europe	Wind	200 hPa	۸										▲	٠		٠						
		850 hPa	۸										▲	٠	٠							
	Geopotential	100 hPa											▲	▲	▲	▲	۸	▲	٠			
		500 hPa												٠		٠						
		850 hPa			1													1				
		1000 hPa										1										
	10 m wind												4	٠		٠						
	Relative humidity	300hPa												۲	۲	۲	۲	۲	۲			
		700 hPa																	۲			•
	Waves	swh							۸					٠	۸		۸		۸			
		mwp	▲						۸				▲	▲	▲	٠	۸		٠		٠	
	Temperature	100 hPa	۸		۲	۲	۲						▲	▲	▲	▲	▲	▲	▲	▲	▲	
Extratropical		500 hPa	۸										▲	٠		٠						
Northern Hemisphere		850 hPa	▲										▲	▲	٠							
		1000 hPa	۲	۲									۲									
	Wind	200 hPa	۸										▲	▲	۸	٠	۸	٠				
		850 hPa											▲	٠	٠							
	Geopotential	100 hPa											▲	4		▲	۸	4	4			
		500 hPa											▲	4	۸	٠						
		850 hPa											▲	٠								
		1000 hPa																				

Cistema Nazionale per la Protezione dell'Ambiente

• new verification software ?

This possibility will be explored to understand if there is a clear advantage.

• from forecast to hindcast (using IFS or ICON analyses) ?

As the hindcast run is long, the soil variables have time to adjust to the atmospheric forcing. Moreover from a technical point of view the system is cheaper (less BU, less time). On the other hand the suite should be reshuffled completely.

Thank you for your attention !

(...and any suggestions are welcome...)

