

6

Recent numerics developments in the COSMO model

39th EWGLAM / 24th SRNWP-meeting ECMWF, Reading 02-05 Oct. 2017

Michael Baldauf (DWD), Bogdan Rosa, Zbigniew Piotrowski, Damian Wojcik (IMGW), Werner Schneider (Univ. Bonn)

COSMO Science Plan (2015-2020)

main topics for COSMO dynamics

- for current 'Runge-Kutta' split-explicit dynamical core (*Wicker, Skamarock* (2002), Baldauf (2010), ...)
 - New Bott (2010) advection scheme for tracer transport
 - Higher order, symmetric scheme for the horizontal discretizations (Morinishi et al. (1998) JCP, Ogaja, Will (2014) MetZ)
 - ..
- Eulag dynamical core (*Smolarkiewicz et al. ...*) as an alternative option Priority Projects '<u>CELO</u>', '<u>EX-CELO</u>', '<u>CELO-ACCEL</u>'
- transition from COSMO model → ICON (LAM) model (~2020+) preparation by COSMO Priority Projects; currently PP 'Comparison of the dynamical cores of ICON and COSMO' (CDIC) (see dynamics talk last year)

The new Bott (2010) advection scheme

... as an optional candidate for tracer advection

currently used scheme:

Werner Schneider (Univ Bonn) Uli Blahak (DWD)

- Bott (1989) MWR •
 - A 1-dim. finite volume advection scheme using the polynomial reconstr. idea of *Tremback et al. (1987)* (default: polynomial degree 2)
 - positive definite flux limitation
 - direction- (or time-) splitting for 3D flows
- Skamarock (2006) MWR:
 - *mass consistency* by parallel comput. of an additional continuity equation
 - CFL>1: use of 'integer/fractional fluxes'
- possible instabilities are reduced by 'full' Strang-splitting ($\frac{1}{2}z \frac{1}{2}y x \frac{1}{2}y \frac{1}{2}z'$)

experience: (nearly) tracer mass conservation is beneficial in convection-permitting models (compared to a classical Semi-Lagrangian scheme)

New development: *Bott (2010) AtmRes*:

- combines a 1D advection scheme (e.g. *Bott, 1989)* to a 3D scheme
- polynomial degree 4 proposed ٠
- retains $q\rho$ =const. for non-divergent flow • without parallel computation of a continuity equation, but with an add./substr. of the divergence in the direction-splitting scheme \rightarrow increase in stability
- without 'full' Strang-splitting • \rightarrow efficiency gain: total model costs reduced by 5% however still x-y-z / z-y-x for odd/even time steps
- for CFL > 1: sub-stepping in the grid row

5

Verification results for the comparison of the new Bott scheme with the current one.

- setup:
- operational COSMO-DE: 2.8 km L50, dt = 25 sec.
- area: red rectangle, 421 * 461 * 50 GPs ٠
- convection permitting (graupel microphysics scheme, only shallow Tiedtke convection, ...)
- nudging analysis

side remark: full region marks the new COSMO-D2 area, 2.2 km L65 planned for operational use at DWD: Q2/2018

Following slides:

Synop verification

Synop verification

6 **Deutscher Wetterdienst** Wetter und Klima aus einer Hand

DWD

7

Synop verification

Upper air verification

Deutscher Wetterdienst Wetter und Klima aus einer Hand

Summary for the verification results of the new Bott-scheme

- Synop-Verif. of T_{2m} and v_{10m} is slightly positive, neutral for TD_{2m}, RH_{2m}
- Synop-Verif. of categorical measures for rain and gusts is negative, cloudiness is neutral
- Temp-Verif. is very positive

\rightarrow Proposal:

the results are not entirely satisfying, however good enough to bring the new Bott-scheme as an option (!) into the official code (v5.6)(fulfil COSMO science plan, sec. 5.2.4)

Outlook:

- further code optimization possible
- extension for TKE advection necessary (TKE lives at w position)
- further tests ...

The Eulag dynamical core as an alternative for the COSMO model

<u>Bogdan Rosa</u>, Zbigniew Piotrowski, Damian Wojcik, Michal Ziemianski (IMGW) Piotr Smolarkiewicz (ECMWF)

Priority projects:

- · COSMO-EULAG Operationalization (CELO)
- EXtension of COSMO-EULAG Operationalization (EX-CELO)

Task 5: Integration and consolidation of the EULAG compressible DC with COSMO framework

 Optimal formulation for the flows with the open boundary conditions: pressure bias diagnostics

Semi-realistic simulations: setup

Semi-realistic simulations using COSMO Runge-Kutta (RK) and compressible COSMO-EULAG (CE) were performed to diagnose for the problem of pressure bias development.

Configuration:

- Turbulence parameterization is turned on
- Moist microphysics and saturation adjustment are turned off
- Soil (sea) processes are turned off
- Water vapour enters buoyancy and there are no sources / sinks of water vapour

• dt = 15 s

Computational domain:

- Bay of Biscay (flat)
- dx = 2.2 km

Test case:

• 15 November 2013 (Azoren High)

Figures in following slides show time evolution of horizontally averaged pressure perturbations. The perturbations are calculated with respect to the time-evolving pressure from the driving COSMO-7 simulation.

time evolution of horizontally averaged pressure perturbations

The compressible implicit EULAG solver employs absorbers only for:

- U- and V-velocity components
 - W (towards 0)
 - Potential temperature

24 T = 0.0 HRK T = 2.0 H20 T = 4.0 HT = 6.0 H16 T = 8.0 H T = 10.0 H 12 8 4 0 -500 -400 -300 -200 -100 100 200 0

Default version of COSMO Runge-Kutta dynamical core uses absorbers for:

- U- and V-velocity components
- W (towards 0)
- Temperature
- Pressure

Semi-realistic simulations: results with absorber for pressure

Disabling the pressure absorber in RK results in the development of a pressure bias similar to that observed in CE results.

Conversely, adding of a simple linear absorber to the compressible implicit CE results in significant reduction of the pressure bias for CE.

A 72 hour realistic simulation with the linear pressure absorber

Realistic simulation using COSMO Runge-Kutta (RK) and compressible COSMO-EULAG (CE) was run for 72 hours in order to check pressure fluctuations in a long-term simulation.

Configuration:

- Turbulence parameterization is turned on
- Moist microphysics and saturation adjustment are turned on
- Soil processes are turned on
- dt = 15 s (RK), dt = 10 s (CE)

A 72 hour simulation with compressible CE at 2.2 km grid resolution

Time evolution of horizontally averaged pressure perturbations. The perturbations were computed with respect to the time-evolving boundary data pressure from the simulations-driving COSMO-7 simulation. Now also absorber for pressure switched on.

Pressure perturbations within the both models have a similar magnitude also after 72 hours long integration time.

Verification of CE forecasts computed for Nov 2013 (24h forecast)

- Verification of the CE forecast for November 2013
- Realistic simulations were performed for each day separately (24h forecast)
- 2.2 km
- Domain corresponds to the standard operational COSMO-2 domain of Meteo-Swiss.
- The simulations were performed using both CE and RK
- Sensitivity of the results to different values of mixing length (150m and 500m), vertical smoothing factor for explicit vertical diffusion (*wichfakt*) and diffusion coefficient for momentum (*tkmmin*) is also analyzed

19th COSMO General Meeting, 11-14 September 2017, Jerusalem, Israel

Experiment settings

Dynamics:

- Numerical and Smagorinsky diffusion are *turned off* for Cosmo-Eulag and *on* for Cosmo Runge-Kutta
- In Cosmo Runge-Kutta setup moist quantities are advected using the "Bott2Strang" scheme
- In Cosmo-Eulag setup moist quantities are advected using the MPDATA A scheme
- For Cosmo Runge-Kutta *irunge_kutta=1* and *itype_fast_waves=2*
- dt = 10 s (RK), dt = 10 s (CE)

Microphysics:

• Standard one-moment COSMO microphysics parameterization including ice, rain, snow and graupel precipitation (igsp=4)

Radiation:

- Calculated every 6 minutes
- Topographical corrections to radiation are turned off (lradtopo=F)

Turbulence and convection scheme :

- Default turbulence setup for high-resolution NWP (*itype_turb=3, limpltkediff=T*)
- Shallow convection parameterization is turned off (*lconv=F*)

Soil model:

• Multi-layer soil model is used (*lsoil=T lmulti laver=T* lforest=T) 19th COSMO General Meeting, 11-14 September 2017, Jerusalem, Israel

Pressure (hPa) – forecast verification with pressure absorber

Mean error is relatively small for both CE and RK. Before 18:00 simulations performed with RK are slightly more in line with observations than those performed with CE. After 18:00, the forecast computed using CE is in better agreement with observations.

Horizontal wind (m/s) at 10 m (with pressure absorber)

Little effect of pressure absorber on horizontal wind.

Temperature at 2 m – forecast verification with pressure absorber

Results computed using CE are closer to observations than those computed with RK. No effect resulting from different values of parameters *wichfakt* and *tkmmin*.

Dew point temperature at 2 m – verification with pressure absorber

Results from both models are in good quantitative agreement. Low sensitivity to different settings of vertical smoothing factor and minimal diffusion coefficients.

Precipitation – forecast verification (wichfakt = 0.5, tkmmin = 0)

Numerical results computed using CE and RK (with pressure absorber) are in good quantitative agreement. The differences are in the range of statistical uncertainty.

Precipitation cntd. – forecast verification (wichfakt = 0.5, tkmmin = 0)

I step 6 **I** step 12 **I** step 18 **I** step 24

Also for larger precipitation the differences are in the range of statistical uncertainty.

Precipitation – forecast verification (wichfakt = 0, tkmmin = 0.4)

w sensitivity to different numerical parameters. Simulations performed with pressure absorb 19th COSMO General Meeting, 11-14 September 2017, Jerusalem, Israel

Precipitation cntd. – forecast verification (wichfakt = 0, tkmmin = 0.4)

Precipitation statistics evolve (in time) in a similar manner. For precipitation 16 mm and more results CE and RK are in qualitative agreement.

Summary for COSMO-EULAG

- the problem of the pressure bias is solved (lateral boundary relaxation for p) \rightarrow
- The compressible Eulag dyn. core implementation into COSMO now shows comparable verification results with the RK solver
- next steps: make ready for operationalisation
 - transfer code into the official COSMO code version (v 5.6?)
 - coupling with Data Assim. (KENDA)
 - make code ready for running on GPUs •
 - . . .

