

Development of limited-area NWP systems at JMA

Tadashi Fujita, Masashi Ujiie, Kohei Kawano, Yasutaka Ikuta, Masahiro Sawada, Masaru Kunii, Kengo Matsubayashi, Hiroshi Kusabiraki, Toru Tsukamoto, Haruka Kurahashi, Ginga Akimoto, Taro Anzai, Kento Aramaki, Takayuki Kakehata, Shusuke Nishimoto, Kohei Aranami, Kosuke Ono, Yuki Honda and Junichi Ishida

Numerical Prediction Division, Japan Meteorological Agency

40th EWGLAM – 25th SRNWP EUMETNET Meetings, 1-4 Oct. 2018

Current NWP models of NPD/JMA

		In Operation			Under Trial
	Global Spectral Model GSM	Meso-Scale Model MSM	Local Forecast Model LFM	Global Ensemble GEPS	Meso-scale Ensemble MEPS
objectives	Short- and Medium-range forecast	Disaster reduction Aviation forecast	Aviation forecast Disaster reduction	One-week forecast Typhoon forecast	
	Global	Japan and its surroundings (4080km x 3300km)	Japan and its surroundings (3160km x 2600km)	Global	Japan and its surroundings (4080km x 3300km)
Forecast domain					
Horizontal resolution	TL959(0.1875 deg)	5km	2km	TL479(0.375 deg)	5km
Vertical levels / Top	100 0.01 hPa	76 21.8km	58 20.2km	100 0.01 hPa	76 21.8km
Forecast Hours (Initial time)	132 hours (00, 06, 18 UTC) 264 hours (12 UTC)	39 hours (00, 03, 06, 09, 12, 15, 18, 21 UTC)	9 hours (00-23 UTC hourly)	264 h (00, 12 UTC) 132 h (06, 18 UTC)* 27 members	39hours (00,06,12,18 UTC) 21 members
Initial Condition	Global Analysis (4D-Var)	Meso-scale Analysis (4D-Var)	Local Analysis (3D-Var)	Global Analysis with ensemble perturbations (SV, LETKF)	Meso-scale Analysis with ensemble perturbations (SV)

^{*} when a TC of TS intensity or higher is present or expected in the RSMC Tokyo - Typhoon Center's area of responsibility (0°–60°N, 100°E–180°).

JMA 10th generation supercomputer system

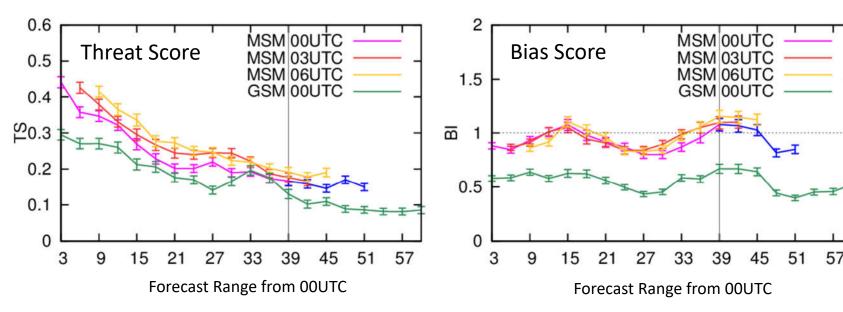
JMA began the operation of its new supercomputer system on 5 June 2018. Migration of operational NWP suites has successfully completed on schedule (~ 1 year).

Effective computer capacity (in terms of meteorological calculation) was enhanced about 10 times.

Comparison of Specifications

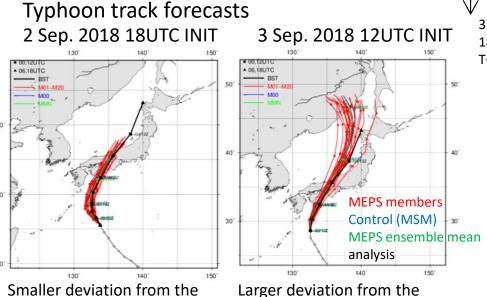
	Previous	New	
Model	HITACHI SR16000/M1 (Vendor: Hitachi)	Cray XC50 (Vendor: Hitachi) 18,166 TFlops	
Theoretical Peak Performance	847 TFlops (*)		
Capacity of Main Memory	108 TBytes	528 TBytes	
Capacity of Magnetic Disk	348 TBytes	10,608 TBytes	

Future major upgrades of the limited-area NWP systems planned on the new supercomputer system

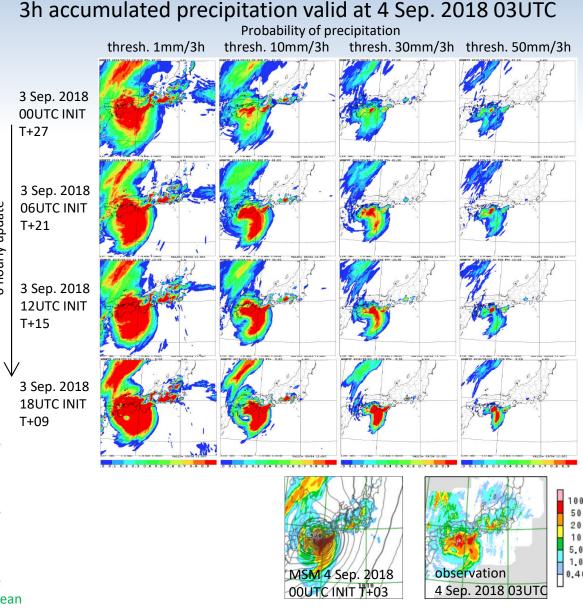

- Extension of forecast ranges of MSM and LFM
- Full operation of MEPS (21 members 4 runs/day, currently under trial)
- Incorporation of ASUCA-4DVar into MA
- Increasing vertical layers of LFM from L58 to L76
- Increasing vertical layers of MSM from L76 to L96
- Hybrid data assimilation for MSM and LFM

Extension of forecast range of MSM

- 39h => 51h in 00 and 12UTC runs (out of 8 runs/day)
- aimed at an enhanced support of weather forecasters
- Operation will start in 2019.


MSM gives precipitation forecasts better than those from the operational global spectral model (GSM) without drastic degradation in its performance over the extended range.

Threat Score and Bias Score of 3h accumulated precipitation 20km gauge, threshold 10mm/3h, 27 Jun. – 14 Jul.,13 Aug. – 30 Aug, 2016



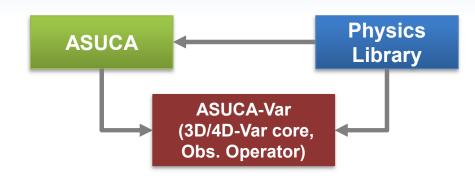
Enhancement of MEPS

- Development of MEPS, currently under trial, is in progress to provide uncertainty and probabilistic information of MSM.
- Full operation of MEPS is scheduled to start in 2019.
- Enhancement of MEPS was applied on 5 Jun. 2018.
 - ensemble size 11=>21
 - 1 run/day => 4 runs/day

analysis => larger dispersion

MEPS predicts regions of intense precipitation corresponding to the observations with gradually higher probabilities through updates of forecast. (The control run (MSM) gives a good forecast in this case.)

analysis => smaller dispersion


A New Non-Hydrostatic NWP Framework: ASUCA

JMA has been developing a new Forecast/DA system "ASUCA".

ASUCA: a new non-hydrostatic dynamical core

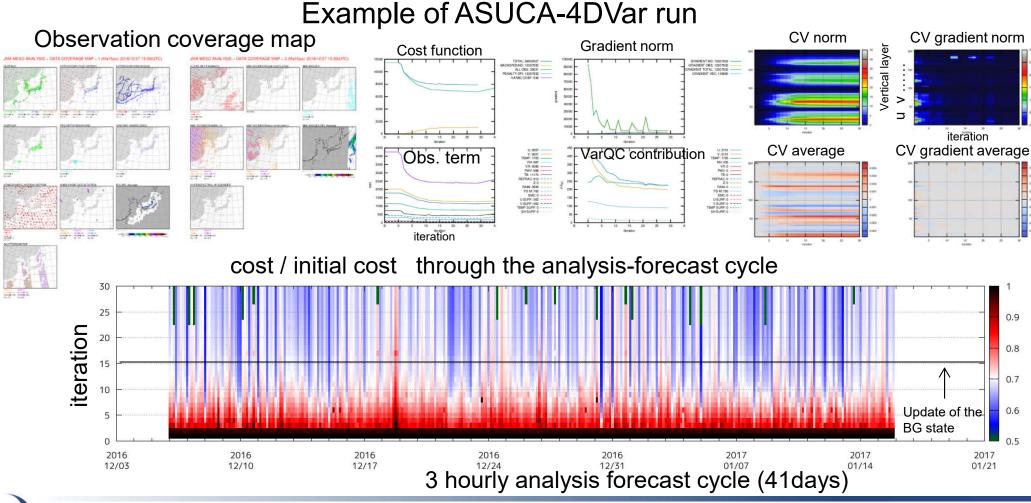
Physics Library: a repository of highlyportable physical process routines

ASUCA-Var: a 3D/4D-Var data assimilation system based on ASUCA

Operational implementation of ASUCA-based systems

_	Jan. 2015	LFM	JMA-NHM => ASUCA	
		LA	JNoVA 3D-Var => ASUCA-3DVar	
_	Feb. 2017	MSM	JMA-NHM => ASUCA	
_	Jul. 2017	real-time monitoring analysis (Hourly Analysis)		

JNoVA 3D-Var => ASUCA-3DVar


- Jul. 2017 MEPS JMA-NHM => ASUCA
- Development in progress
 - ASUCA-4DVar for MA
 - ASUCA-SV for MEPS

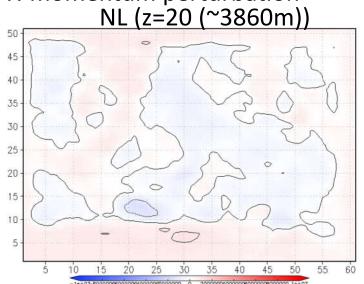
Development of ASUCA-4DVar

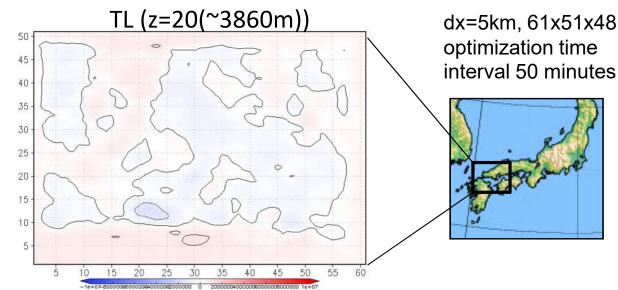
ASUCA-4DVar

- Development is in progress for the next DA system of the operational MA.
- TL/AD based on ASUCA.
- Current status: close systematic examinations and updates to enhance robustness and stability in operational situation.

Development of ASUCA-SV

Development of ASUCA-SV, using TL/AD based on ASUCA, is in progress for an upgrade of MEPS initial perturbations.

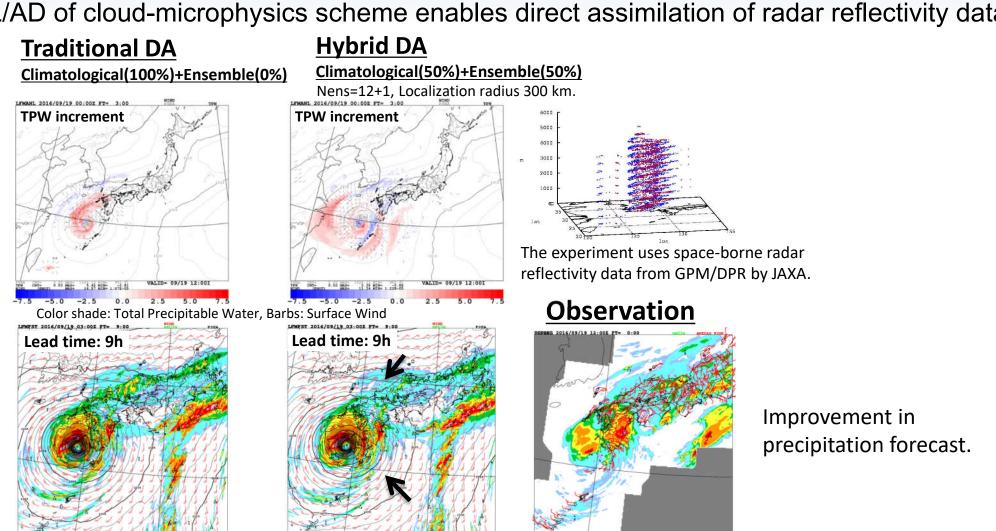

Example of perturbation from ASUCA-SV


The leading SV calculated from the Lanczos algorithm with 4 iterations using a kinetic energy norm

Singular Value	NL growth rate	TL growth rate
5.1972	5.1815	5.1972

Singular value well coincides with NL and TL growth rates.

X-momentum perturbation


NL and TL time evolutions show a similar pattern.

Development of Hybrid DA

Development of a hybrid 4D-Var system is in progress, for future enhancement of MA.

Flow dependent background error from ensemble forecasts.

The hybrid 4D-Var with an extension of control variables including hydrometeors and TL/AD of cloud-microphysics scheme enables direct assimilation of radar reflectivity data.

3h accumulated precipitation