

Precipitation Assimilation: a review and latest developments at the Met Office

Lee Hawkness-Smith

MetOffice@Reading

EWGLAM / SRNWP 1 October 2018

- Motivation
- Precipitation observations
- Quality control
- Assimilation methods
- Progress at the Met Office

Why assimilate precipitation?

Nowcasting: forecast hazardous weather and precipitation *quantitatively* and *promptly* ~ to T+6 within 15 minutes of data time

Radar <u>1030 GMT</u> <u>16 August 2004</u>	-
0 (0.125) 0.125, 0.25 0.25, 0.5 0.5, 1 1.2	, "
2 - 4 9 - 10 9 - 22 7 - 22 No D ata	1 - A
Bolicastive Staughterbridger*Camelford	Cart of
7 - C 🕈	1.1

Nowcasting techniques

Extrapolation

- ✓ Quick and simple technique
- What about orographic enhancement, mesoscale dynamics, etc. ?

1100

- More physically realistic modelling of the evolution of weather events
- Requires high spatial and temporal resolution modelling and data assimilation, and therefore rapid collection, processing and dissemination of large data volumes – takes time to compute and to spin-up

Merged

NWP

• Use best available data at given forecast time

Quality control issues for radar

wet radome

action action another the second seco

Data assimilation techniques Met Office Used for precipitation

Physical initialization

Modify moisture and temperature fields to be consistent with observed precipitation rates

Latent heat nudging

Rescale model latent heat profiles by the ratio of observation / model precipitation ratios

1D-Var+3D/4D-Var

Use a 1D variational method to generate temperature and humidity increments for assimilation in 3D or 4D-Var

Incremental 4D-Var

Minimise the differences between the model and observations by iterating a simplified, linear model

Full-fields 4D-Var

Iterate a full non-linear forecast model in the minimisation – very expensive!

Ensemble methods

Use ensemble members to represent background error covariances

Latent heat nudging

- Proven to be effective at improving precipitation in first few hours of forecast
- Latent heat increments may not be dynamically consistent with analysis
- Relationship between surface precipitation and latent heat release in model column may break down at high resolution
- Does not use full 3D information from volume scans, only derived surface rainrates
- Deriving surface rainrates leads to further errors
- Must maintain another system

Latent heat nudging of surface precipitation, Met Office

Jones & Macpherson (1997)

- Assimilate observations in a consistent framework
 with other observation types
- Avoid handling the non-linearities of radar reflectivity observations in the full 3D/4D-VAR
- Double use of background information may reduce impact of observations and reinforce incorrect features in the model
- Information loss as observations treated in a column

Wattrelot, et al. (2014)

- No a priori diagnostic adjustment of moisture or heating rate
- Directly assimilate all observations together in a consistent framework
- (Aim for) consistency in microphysics
- It has worked well for satellite radiances
- Requires a simple (for convergence) yet physically reasonable adjoint model – challenging for precipitation processes
- How do we assimilate observations when the background has zero rain?

4D-Var assimilation of hourly surface precipitation, JMA

- For pure ensemble methods, no linearisation or adjoint required
- Direct use of flow dependent covariances
- More suited for massively parallel computing
- Limited ensemble size due to computational constraints means localization required
- No members may have precipitation

EnKF assimilation of 3D radar reflectivities, DWD

Figure 9. The difference in Fraction Skill Score (FSS) against forecast lead time over the 29 deterministic forecasts: (a) CONV+RAD minus CONV and (b) CONV+RAD minus CONV+LHN. The FSS is calculated for a neighbourhood of five grid points (in each horizontal direction) and a threshold of 0.5 mm h^{-1} . The error bars are obtained via bootstrapping (2.5 and 97.5%iles).

Bick et al. (2016)

The UK Radar network

- 18 operational C-band weather radars in the British Isles
- All UK radars now Doppler capable
- Up to 5 long-pulse reflectivity scans every 5 minutes out to 250 km
- Doppler scans every 10 minutes
- Dual-polarization upgrade ${}^{\bullet}$ complete
- 3D data from all radars in UK network available for assimilation

- Flags generated in RadarNet used to reject nonhydrometeorological echoes: clutter, speckle, beam blockage
- Dry observations and noise accepted
- Circle superobbing and Poisson thinning applied as with Doppler, but with broader superobs and sparser thinning. Dry obs can be thinned sparser than precip.
- Model QC: reject obs where background T > 3C, to avoid bright band melting layer. No other model QC.
- Observation error currently specified as 2 single numbers, one for dry, one for precip. Use ½ (O-B) from first trials for precip.

4D-Var reflectivity assimilation scheme: Include 3D reflectivity in hourly UKV

PF model:

Autoconversionlike term from diagnostic cloud water, rain falls out in single timestep (no evaporation)

Cloud increments related to background cloud fraction

Linearity assumption is poor for precipitation: keep assimilation time window short

Radar Reflectivity operator:

Current operator uses interpolation to a point and simple Z-R or Z- q_r relation for rain (no assimilation of ice yet)

Unified Model has reflectivity diagnostics, still need a simple relation for the PF & adjoint model

Innovations can be very large: reweight with Huber norm

Assimilate dry and rainy observations, reject non-hydrometeorological echoes

- Weights of large innovations reduced but not rejected
- Alternative approach is to make a error a function of observation value (e.g. JMA)

© Crown crown shy nyfit Office Andrew Lorenc 20

First UKV trials

- Trial period: 5 30 June 2014
- Assimilate $\sqrt{(Z+1)}$ scales with mass of water
- Include obs where no rain in background
- Configurations:
 - Control
 - Control LHN
 - Control + Reflectivity
 - Control LHN + Reflectivity

First UKV trials

- All trials ran to completion
- Case study demonstrated ability to generate convergence line with precip
- Ob coverage technically constrained in OPS
- Significant dry bias

UKV mi-aj821 Precipitation rate [mm/hr] and cloud Sunday 1400Z 08/06/2014 (t+2h)

Radar obs derived

Control

Radar|-NoLHN

32+ mm/hr

Reflectivity assimilation trial correctly forecasts highlighted band of precipitation

20140607 12:00

UKV mi-aj821 Precipitation rate [mm/hr] and cloud Saturday 1200Z 07/06/2014 (t+0h)

UKV mi-aj823 Precipitation rate [mm/hr] and cloud Saturday 1200Z 07/06/2014 (t+0h)

Radar obs derived

2 - 4 4 - 8 8 - 16 16 - 32 32+ mm/hr

RadarZ-NoLHN Analysis

Promising initial results but scheme had dry bias

32+ mm/hr

Radar reflectivity monitoring

Page maintained by <u>Lee Hawkness-Smith</u> © Crown copyright. Met Office Kom 😡 do

Reflectivity operators

qrain rainrate

100

Value dBZ

O-B rainrain Histogram 2500 $Z_{R} = 180 R^{7/4.67}$ 2000 $Z_{R} = 1.63 \times 10^{3} q_{r}^{7/4.0}$ 1500 requency First trials used R: 1000 after evaluating monitoring statistics, 500 use q_r in current trials -100-5050 0

Second UKV trials

- Summer and Winter trials run
- Use (relatively) unbiased q_{rain} operator
- Test rejecting all dry observations or sparser thinning for dry observations
- Tested using reflectivity obs every 10 minutes throughout time window, and T-30,T-15 and T+0 only
- Tested quasi-static Var configuration (gradually increasing length of assimilation window)

Second UKV trials

- Some very promising case studies
- Unacceptable rate of failure to converge
- Verification scores mixed

Case study: 08Z 3 Feb 2016

T+2

Observations

UKV mi-aq093 Precipitation rate [mm/hr] and cloud Wednesday 0800Z 03/02/2016 (t+2h)

RadarZ NoDry LHN

© Crown copyright Met Office

UKV mi-aq092 Precipitation rate [mm/hr] and cloud Wednesday 0800Z 03/02/2016 (t+2h)

mm/hr 8 - 16 16 - 32

Control

UKV mi-aq507 Precipitation rate [mm/hr] and cloud Wednesday 0800Z 03/02/2016 (t+2h)

8 8 - 16 16 - 32 32+ mm/hr

RadarZ ThinnedDry T-30,T-15,T0 **NoLHN**

UKV mi-aq789 Precipitation rate [mm/hr] and cloud Wednesday 0800Z 03/02/2016 (t+2h)

0.25 - 0.5 0.5 - 1 1 - 2 12+ mm/hr Control - LHN

UKV mi-aq612 Precipitation rate [mm/hr] and cloud Wednesday 0800Z 03/02/2016 (t+2h)

0.1 - 0.25 0.25 - 0.5 0.5 - 1 1 - 2 2 - 4 4 - 8 8 - 16 16 - 32 32+ mm/hr

RadarZ NoDry T-30,T-15,T0 NoLHN

Diagnosis of Var failures

Met Office

Analysing failed cycles from different trial periods in more detail showed evidence of:

- stratospheric ringing
- large qT and theta increments at ~5km altitude •

08 Feb 2016 16UTC: Theta increment

Diagnosis of Var failures 29 May 2017 00UTC

mi-av146 qT on level 31

q_{rain increment} after 1 timestep

Third UKV trials

• Retune precipitation efficiency

- Abandon use of Quasi-static Var
- Assimilated reflectivity observations at T-30, T-15 and T0

Third UKV trials

 Conservative configuration runs without failure, stretch configuration (with smaller observation error and smaller superobservations) fails at rate of ~2 cycles / month

• Verification scores positive with respect to operational system!

Ready for implementation! (after a little computational optimization)

Fraction skill scores: Summer 2016

+36

Conventional + Refl

1hr Precipitation Accumulation (mm), Fractions Skill Score (Forecast - Analysis),

1hr Precipitation Accumulation (mm), Fractions Skill Score (Forecast - Analysis), UK area (scale rainfall), 20160702 00:00 to 20160721 23:00, Unspecified truthtype, Difference (Reflectivity trial no LHN smaller superobs smaller error mi-aw686 - Control with LHN mi-aw272

1hr Precipitation Accumulation (mm), Fractions Skill Score (Forecast - Analysis), UK area (scale rainfall), 20160702 00:00 to 20160721 23:00, Unspecified truthtype, Difference (Reflectivity trial with LHN mi-aw275 - Control with LHN mi-aw272) 25 grid lengths max = 0.0511816 0.5mm Conventional 1.0mm 4.0mm + LHN 90th percentile + Refl 95th percentile E +2 +3

1hr Precipitation Accumulation (mm), Fractions Skill Score (Forecast - Analysis), UK area (scale rainfall), 20160702 00:00 to 20160721 23:00, Unspecified truthtype, Difference (Reflectivity trial with LHN smaller superobs smaller error mi-aw692 - Control with LHN mi-aw272

Conservative

Stretch

LHN retirement? Europe may be the answer....

• Best results come from using both LHN and direct reflectivity assimilation together. Need to understand why, can we afford to maintain both systems?

• Most recent results suggest most of benefit of LHN comes from continental radar data, which is not yet available in the direct assimilation system...

