Regional Cooperation for Limited Area Modeling in Central Europe

ALARO status overview

with contributions by Radmila Brožková, Ján Mašek, Luc Gerard

Neva Pristov

7AMG

Talk outline

- ALARO current status
- Turbulence scheme with shallow convection
- Ongoing developments
- Diagnostic fields
- Outlook

ALARO status

ALARO is a canonical model configuration of ALADIN system

In the operational use in ALADIN countries

- ALARO-0: at, hr, ro,
- ALARO-1vA|B: be, cz, hu, ma, po, sk, si, tr model resolution between 8 km – 2 km, 1.3 km

In EPS systems

- LAEF, GLAMEPS, EPS at HMS, RMI
- multi-model ShortRangeEPS at AEMET

In climatological simulations

be, cz, fi,

Presentation Martin Belluš

National

posters

ALARO-1 version - turbulence

- Turbulence scheme TOUCANS
 - Valid for whole stability range,
 - The influence of moisture is included,
 - Stability parameter and turbulent exchange coefficients are not strictly local and have prognostic character,
 - Can simulate both turbulence and clouds in PBL.

A Turbulence Scheme with Two Prognostic Turbulence 3381–3402 Energies Ivan Bašták Ďurán, Jean-François Geleyn, Filip Váňa, Juerg Schmidli, and Radmila Brožková Published online on 6 September, 2018.

https://doi.org/10.1175/JAS-D-18-0026.1

Shallow convection

- Shallow convection is part of TOUCANS
 - Direct parameterization of moist buoyancy flux in a general partly saturated case, for which the lapse rate is:

$$\frac{N^{2}(C)}{gM(C)} = \left(\frac{c_{pd}}{c_{p}}\right) \frac{\partial ln\theta_{l}}{\partial z} + \left\{\frac{R_{v} - R_{d}}{R} + \widehat{Q}(C, C_{n}) \left[\frac{L_{v}(T)}{c_{p}T} \frac{R}{R_{v}} - 1\right] \left[\frac{R_{v} - R_{d}}{R} + \frac{1}{1 - q_{t}} \frac{1}{1 + D_{c}}\right] \right\} \frac{\partial q_{t}}{\partial z}$$

 $\hat{Q}(C, C_n)$ Is determined by a simple mass-flux type scheme and by the fit to LES data.

Shallow convection

- Recent changes leading to improved initial determination of the parameter $\hat{Q}(C, C_n)$
 - Removal of a combined TKE/TTE threshold to abort the cloud profile,
 - Taking into account negative buoyancy properly,
 - Correction of computations determining the "enough thick" stable layer above which there is no new cloud base,
 - Removal of the saturated stability threshold for the cloud existence.

Shallow convection modifications

- Interaction with deep convection is changed,
- Precipition location is better.

REF: reference **NEW**: improved SCC

Radar & gauges merge

LSC31, 17 September 2018

SHMU

ARSO METEO Slovenia

ZAMG

Shallow clouds Winter case 17/01/2017 at 12UTC (00+12h)

Reinforced turbulent transport of water helps to form more clouds.

Heavy convective rain case Precipitation 6h 29/06/2017 at 12UTC (00+12h)

Better correspondence of the activity locations.

Radar & gauges merge

EWGLAM, October 2018

Summer e-suite from 22/06 to 10/07/2017.

Improved SCC reduces warm and dry bias at the PBL top. RMSE scores within PBL are slightly improved.

Winter e-suite from 10/01 to 20/01/2017. Better humidity scores.

....

Ongoing developments

- Linking ALARO with the SURFEX schemes
- Enhancement in TOUCANS Third Order Moments improvements Mixing length scale choices
- The unification of cloudiness
- Microphysics Prognostic graupel scientific validation

ALARO coupled with SURFEX

- Usage of SURFEX
 - Benefits: advanced treatment of snow, lakes, ..., new physiography data, ...
 - Modifications needed on TOUCANS and SURFEX side
 - Adaptations related to some fields:
 - Roughness and drag coefficients
 - Unified computation of the grid-box snow fraction for albedo, dynamical effective and thermal roughness

New roughness treatment - results

Unified computation of grid-box snow fraction for roughness and albedo - test done with full assimilation cycle

Snow surface became less rough; modification helps to improve albedo of the grid box.

black line - reference;

red line – new grid-box snow fraction formulation with tuning, sub-grid scale contribution is not included in thermal roughness. TEMPERATURE [K] WIND SPEED [m/s]

The unification of cloudiness - introduction

- Cloud cover and condensates (droplets, ice) used:
 - in microphysics (joint contribution from adjustment and unresolved updrafts) are parameterized by a simplified Xu-Randall (1996) formula,
 - in radiation are parameterized also by the Xu-Randall scheme with some extra modifications (done in the past for tunings),
- Unification steps are undertaken:
 - Use the same critical relative humidity profile including its modulations (horizontal resolution, water phases),
 - Get-rid of the extra modifications in the "radiation part", which are now obsolete,
- Verification of radiative cloud cover use of the SW and LW radiation fluxes thanks to high precision of the ACRANEB2 scheme.

Aviation related diagnostics

height of stratus top and base, stratus identification index, LVP index (occurrence of conditions for "low visibility procedure")

- Convection related diagnostics density of lightning, probability of hail, relative helicity, storm motion vector, mixed layer CAPE, deep layer shear
- Biometeorology

mean radiant temperature corresponding to a human body

- Lightning is parameterized according to McCaul 2009 method
 - the diagnosis is based on graupel content and temperature in cloud layer,
 - density over a time period.

EWGLAM, October 2018

- Evaluation of AROME lightning diagnostic
 - For situations when precipitation is forecasted and observed
 - Is there a benefit of using AROME lightning forecasts for automatic products with respect to methods based on Showalter and/or CAPE?

EWGLAM, October 2018

from David Schönach and Christoph Zingerle

- Evaluation of AROME lightning diagnostic
 - For situations when precipitation is forecasted and observed
 - Is there a benefit of using AROME lightning forecasts for automatic products with respect to methods based on Showalter and/or CAPE?

EWGLAM, October 2018

from David Schönach and Christoph Zingerle

Mean radiant temperature corresponding to a human body

- The calculation is based on the balance of solar and thermal radiative fluxes (in the ACRANEB2 scheme) and tabled parameters of human body properties published in literature,
- It serves to compute the Universal Thermal Climate Index (UTCI).

summer evening prediction - (09/08/2018 at 17h UTC)

mean radiant temperature

2m temperature

Outlook

- Enhancement of the 3MT downdraft parameterization towards non-saturated downdraft option
- Adding aspects of Complementary Sub-grid Drafts to radiation, turbulence and microphysics
- Further enhancements of TOUCANS
- Towards the unification of cloudiness

Thank you!

EWGLAM, October 2018

ARSO METEO Slovenia

