

NWP related activities @SHMU

40th EWGLAM & 25th SRNWP Meetings, 1.-4.10.2018, Salzburg, Austria

(www.shmu.sk) nwp@shmu.sk => Martin Belluš - Mária Derková - Martin Dian - Richard Habrovský - Michal Neštiak - Martin Imrišek - Ivan Prcúch - Oldřich Španiel - Viktor Tarjáni - Jozef Vivoda - Roman Zehnal					
system	ALADIN/SHMU	ALARO-2km	AROME-2km		3500
НРС	IBM Flex System p460	IBM p755			2750
HW	4x Power7+ 8core CPUs (3.6 GHz), 256 GB RAM	4x Power7 8core CPUs (3.6 GHz), 256 GB RAM			2500
nodes	12 (6 nodes failed - HW problems, only 3 replaced => 9)	Ę		2250	
SW	Red Hat Enterprise Linux; gfortran 4.9.3 (xlf 15.1.0)	Gentoo 4.4.111 Linux, gfortran 7.3.0		A REAL PROPERTY AND A REAL	1750
Status	operational	te		- 1250	
model	CY40T ²	'1bf07_export			
physics	ALARO-1vB	ALARO-1vB	AROME-France CMC		
horizontal resolution	4.5 km, 625x576 pts	2.0 km, 5 1			
spectral trunc & grid	312x287 linear	255x19 [°]		-250 3500 3250	
vertical levels	63	73		R	3000
time step	180 s	144 s	100 s	Ser Ser	2500
dynamics	hydrostatic	non-hydrostatic			2000
coupling model	ARPEGE (long- & short cut off), 3 h frequency	ALARO/SHMU (4.5 km), 1 h frequency			1500
assimilation	upper air spectral blending + CANARI surface analysis	downscaling			
initialization	no in	no initialization			
forecast ranges	78/72/72/60 (a' 1 h)	+78 h at 00UTC/+72 h at 12UTC (a' 1 h)			

Various looks on Fabienne storm @SHMU.

The +27 hours wind gust forecasts from ALADIN systems operated @SHMU and corresponding INCA analysis, the associated warning and the wind speed measurements at two mountain stations are plotted below.

Recently, within the joint effort towards RUC radar data assimilation all RC LACE radars from OIFS (in ODIM/HDF5 format restructured by HOOF tool) were tested in BATOR (CY40T1bf09). An example of radial velocity from Maly Javornik for 24/09/2018 03 UTC is shown with thinning distances of 1 and 5 km. With 5 km thinning (pure spatial separation) important local features were ignored. [M.Nestiak]

All displayed data are valid for 24/09/2018 03 UTC.

GNSS processing

[M. Imrisek]

An experimental 3DVAR assimilation suite has been implemented for AROME/SHMU [2 km/L73] domain (see above) with 6 h cycling. Locally processed GNSS stations (space.vm.stuba/pwvgraph) are used together with SYNOP, TEMP, AMDAR and HRWIND observations from OPLACE. The analysis and first guess departures were extracted to perform an a posteriori validation of the static GNSS whitelist over the period of 27.06.-11.09.2018. Upon the Jarque-Bera tests (normal distribution of residuals - see statistics for all stations on the Figure below) 6 stations had to be excluded. A VarBC will be tested to generate the station whitelist.

ALADIN-LAEF upgrade

[M. Bellus]

The ALADIN-LAEF suite is operationally running under obsolete SMS system on ECMWF HPCF. In preparation of new ALADIN-LAEF setup, the environment for the PHASE I was rewritten from scratch under ecFlow, using Perl and Python code. Therefore, recently developed ALADIN-LAEF components like SPPT and ensemble Blending+3DVAR can be easily plugged in. The ecFlow suite is ready for testing in the Time Critical application environment.

Validation of ALADIN-LAEF 3DVAR assimilation

In Phase II of new ALADIN-LAEF setup (4.8 km/L60, 16 members) A SODA-EKF based assimilation suite is being built over the INCA-SK the handling of IC perturbations of the upper air fields will be domain of 501x301 pts with 1 km grid, using CY40T1. INCA analysis of 2m T and 2m RH is used as high resolution gridded observations based on ensemble blendvar (combination of Blending by DF and see bottom pictures on Figure 1. Forcing (~20 m above the surface) 3DVAR data assimilation) approach. The 3DVAR DA was technically implemented into ALADIN-LAEF in 2016. Its technical validation is provided by ALARO/SHMU 4.5 km model. The preliminary results are shown on Figures 2 and 3, displaying analysis increments of the started with gradual implementation of various observation types: SYNOP, TEMP, AMDAR, GEOWIND - all OPLACE and GNSS ZTD (SUT) control variables (TG1, TG2, WG1, WG2) and corresponding 2m data. The whitelist for GNSS ZTD data was generated using the parameters innovations. Introduction of INCA precipitation analysis "best day" (all members and lowest amount of rejected stations) and radiation analysis based on NWCSAF as forcing is planned as and "best member" (all days and lowest amount of rejected well as thorough validation, upgrade to SURFEX v8.1 and addition stations) criteria together. An example of specific humidity analysis of snow cover analysis. increment at model level 50 with GNSS ZTD data assimilation only CLSHUMI.RELATIVE 2018-05-01 12:00:00 CLSTEMPERATURE 2018-05-01 12:00:00 is on Fig. 1 (left). Then, for IC the Gaussian perturbation was applied within screening to all data. An example of temperature perturbations at model level 50 is shown on Fig. 2 (right). The proposed configuration with 3DVAR step inserted between CANARI surface analysis and Blending by DFI blocks was run for 2 weeks period of 16.-30.5.2016. The forecast verification scores were slightly positive to neutral in the beginning of integration for all parameters when compared with Phase I, with only deterioration of geopotential - see examples of verification results on Figure 2.

Amateurs meteorological stations

The station is ensembled from cheap sensors on Raspberry Pi is installed on the Inovec hill (1042m), providing T, RH and p measurements.

[M. Imrisek, M. Bellus]

Building of new SODA-EKF based assimilation suite [V. Tarjani]

Figure 1: 4.5 km/L63 ALARO/SHMU CANARI surface analysis of 2m RH and T (top) and corresponding INCA analyses (bottom).

-0.2

-0.3