

Recent achievements in the data assimilation systems at Meteo-France

C.Loo and many colleagues from CNRM/GMAP

40th EWGLAM and 25 SRNWP Meeting Salzburg, October 2018

Deterministic

Evolutions of the Global system

- Evolutions of the LAM system
- Conclusions

Meteo-France Global system : new version

	Current version Cy42 surfex v7	New version Cy43 surfex v8
ARPEGE Deterministic	Tl1198c2.2 L105 (7.5km on W Europe) 4DVar (6h cycle): Tl149c1L105 & Tl399c1L105 5 forecasts per day up to 114h	Tl1798c2.2 L105 (5km on W Europe) 4DVar (6h cycle): Tl224c1L105 & Tl499c1L105 5 forecasts per day up to 114h
AEARP (global EDA based on ARPEGE)	Tl479c1 L105 ; 25 members 4D-Var (6h cycle): Tl149c1 L105 Background covariances averaged on 1.5 days and updated every 6h	Tl499c1 L105 ; 50 members 4D-Var (6h cycle): Tl1224c1 L105 Background covariances averaged on 0.5 days and updated every 6h

Meteo-France Global system : new version Increase of increment resolution

112.5

diag_bgvecs_hr horizontal_lengthscales B7F4 20170112H00A Lu level 82 ~ 850 hPa min = 54.0038108826 max = 115.263832092 moy = 81.0969330978

Diagnosed u length-scale 850 hPa 50 km (T399)

30°1

Reduction of lengthscales of background error correlations Small structures better analysed

Diagnosed u length-scale 850 hPa 40 km (T499)

Meteo-France Global system : new version Decrease of time-averaging for correlations

(30h with 25 members / 12h with 50 members)

diagnosed u length-scale 850 hPa 40 km (T499) 25 members

diagnosed u length-scale 850 hPa 40 km (T499) 50 members

L.Berre

Local variations better represented

Meteo-France Global system : new version AEARP/ARPEGE HR

Meteo-France Global system : new version IASI and CrIS interchannel correlations

Estimated correlations from Desroziers diagnostics over 3 full days of global assimilations

 Introduce interchannel correlations (but keep sigma_o unchanged)

Meteo-France Global system : new version IASI ans CrIS interchannel correlations

V. Guidard

Meteo-France Global system : new version IASI ans CrIS interchannel correlations

Overall improvement for all parameters

V. Guidard

Meteo-France Global system : new version Forecasts scores

Normalized scores for EXP – OPER in comparison with ECMWF analyses over 3 months

- Evolutions of the Global system
- Evolutions of the LAM system
- Conclusions

Meteo-France LAM system : assimilation of IASI surface-sensitive channels over land

How to diagnose surface temperature over land in clear sky conditions ?

Land surface emissivity atlas (from U Wisconsin)

less channels assimilated over land than over sea

Land surface temperature (LST) retrieved from IASI window channel 1194 (943.25 cm⁻¹) in clear sky

V. Guidard

Example:

Land surface temperatures retrieved from IASI in clear sky pixels (colour scale, temperature is in Kelvin) and cloud cover within IASI pixel (grey scale, percentage) in AROME-F, 8 October 2017 at 21 UTC.

Meteo-France LAM system :

assimilation of IASI surface-sensitive channels over land

Number of IASI channels assimilated

	ARPEGE	AROME France
Current version	Over sea : 123	Over sea : 44
	Over land : 77	Over land : 8
New version	Over sea : 123	Over sea : 44
	Over land : 122	Over land : 43

Use retrieved LST to simulate all the other IASI channels

Assimilate same channel selection over land and over sea!

V. Guidard

Meteo-France LAM system : assimilation of OPERA radars data in AROME

- 30 French radars (Meteo-France specific produc) are currently assimilated (in blue)

- The goal : monitoring and Operational assimilation of 62 European OPERA radars included in French AROME domain (in red)

- Definition of the OPTIMAL USE of OPERA radars data:

- comparison between raw and filtered reflectivity for the "no rain" identification,
- Doppler wind,
- use of OPERA quality index.

Meteo-France LAM system : assimilation of opera radars data in AROME

- Validation towards operational configuration:

- RED: without other OPERA radars
- BLACK: OPTIMAL USE of other OPERA radars

- Statistics of departures (Obs. assimilated):

- Better fit of guess of relative humidity retrievals against all radars (French and other OPERA radars)
- Better fit of guess and analysis of radial wind against all radars (French and other OPERA radars)

Eric Wattrelot

Meteo-France LAM system : EDA at convective scale AEARO

- AROME uses isotropic, homogeneous and climatological B matrix estimated with an offline EDA (1,3 km) only with perturbed observations
- AEARO is an ensemble of cycled 3D-Var with perturbed observations and surface/lateral boundary conditions
- AEARO provides an ensemble of analyses and short-range forecasts that can be used to :
 - build flow-dependent background error statistics (B matrix) for the deterministic AROME assimilation
 - initialize Ensemble Prediction System PEARO

Meteo-France LAM system : EDA at convective scale AEARO

	AROME-France	AEARO
Spatial resolution	1.3 km	3,25 km
timestep	50 s	100 s
Dynamical core	Non-hydrostatic	Hydrostatic
Domain size	1440 x 1536 L90	600 x 640 L90
Assimilation	Deterministic 3D_Var	Pertubed 3D_Var
frequency	1 h	3 h

Some tunings are still usefull to be used in deterministic AROME 3D-Var

AEARO is used in operations since this spring to initialize the ensemble forecast system PEARO

Conclusions

Significant update for the global system AEARP/ARPEGE

- 5 km resolution over France
- improved resolution of analysis increments
- 50 perturbed 4D-Var
- More observations assimilated (IASI observations ...)
- interchannels correlations for IASI & CrIS...

Evolutions for the LAM system AROME

- More observations assimilated (OPERA data, IASI over land...)
- Good results
 - EDA AEARO not already used in AROME 3D-Var

→ initialization of PEARO

Towards 4DEnVar

Montmerle T, Michel Y, Arbogast E, Menetrier B and Brousseau P (2018) : A prototype 3D Ensemble-Variational Data Assimilation scale for the convective scale AROME model. QJRMS .

Thanks for your attention

Meteo-France Global system : new version Scientific contributions

- Tuning in the dynamics (horizontal diffusion, SL iterations number)
- Tuning of convection scheme in ARPEGE
- Improved version of AROME microphysics scheme (to be confirmed)
- Tuning of sigma_b for humidity in ARPEGE-EDA
- Use of T2m and H2m over nature tail in surface analysis
- Variational bias correction for GNSS observations
- Assimilation of more IASI channels over land
- Assimilation of wind from ScatSat-1 (Ku band)
- Assimilation of AMVs from GOES-R (16)
- Monitoring of GNSS-RO on FY-3C
- Monitoring of AMSR-2 from GCOM-W1 (7 channels)
- Monitoring of ATOVS, ATMS, MWHS-2 DBNet data
- Monitoring of Doppler winds and radar reflectivities (European radars)
- Initialization of CMO-1D in AROME-Overseas with Mercator 4x per day
- News diagnostics: visibility, type of precipitations, ...

3DVar and EnVar for AROME in cy43

3DVar « OOVAR » validated against « MASTERODB » for all obs (incl. radar) EnVars make use of perturbations from an AROME EDA at 3.25 km Localization can be applied either in spectral or in grid-point space (rec. filters) Interpolation operators can be applied to retrieve increments at the operational resolution (1.3 km)

Work on 4D-EnVar ongoing with advected localization

So far Hybrid w. 80 % ensemble gives the best forecast scores comp. to 3DVar

