Artificial Neural Network post-processing of EPS

Artificial Neural Network post-processing of EPS

Andrzej Mazur, Grzegorz Duniec

Institute of Meteorology and Water Management National Research Institute

Institute of Meteorology and Water Management – National Research Institute

Artificial Neural Network post-processing of EPS

Introduction and Setup

TLE – Time-Lagged Ensemble; MVE – Model-Varied Ensemble

Ensemble calibration –

Simple Mean (SM) vs. multilinear regression (MLR) vs. ANN mean

*) Simple avg. – arithmetic mean, m=20 members;

**) m=24=20 members+geo.coords+lead/fcst.time;

***) Trained on data from July 2016 to March 2018, tested on data of April 2018

Spatial distribution of dew point temp. at 2m agl.: mean observations (upper left), simple mean (upper right), MLR mean (24 predictors, lower left) and ANN mean (24 input neurons, lower right). Values for April 2018.

Basic statistics for April, 2018

Artificial Neural Network post-processing of EPS

Conclusions

- Ready-to-use (and/or modify) dedicated software
- Elegant and intuitive concept.
- Forecasts improve with the extension of the learning period...
- ... that extends *via* connection to DMO.
- In the operational mode 24 predictors are set (values of 20 ensemble members + 4 spatio-temporal coordinates).
- Results collected 4x/day network is updated montly.