C-LAEF: Convection permitting Limited Area Ensemble Forecasting

Clemens Wastl, Yong Wang, Christoph Wittmann, Endi Keresturi

Ensemble prediction systems in Austria

Part of the seamless system

C-LAEF at ZAMG

Convection permitting Li				
AROME based; under developme	ent - not ye	et operational; ECMWF super	compu	uter
ensemble size	16 + 1			
Δx / vertical levels	2.5 km /	/ 90		
coupling	ECMWF	-ENS		
runs per day	00/12 (+	+ 48 h) - 06/18 (+6h)		
Initial conditions er	or +	Lateral boundary conditions error	+	Model error
 Ensemble- data assimilation (ED Ensemble- 	۹)	Coupling with		 Perturbation of tendencies (SPPT, pSPPT) Perturbation of parameters

- data assimilation of surface variables (ESDA)
- Ensemble-Jk

- ECIVIVVF-EINS
- Ensemble-Jk •

- (SPP)
- Combination of pSPPT+SPP • (HS)

ZAMG

eodyno

IC and LBC perturbations in C-LAEF

- Jk blending method developed by Guidard and Fischer (2008)
- Integration of uncertainty from global EPS directly to C-LAEF data assimilation
- Combination of large scale (global EPS) with small scale (C-LAEF) perturbations
- Consistency between IC und LBC perturbations in C-LAEF

Cost function (3DVar)

$$J(x) = \frac{1}{2}(x - x_b)^T B^{-1}(x - x_b) + \frac{1}{2}(y - Hx)^T R^{-1}(y - Hx)$$

$$\int_{b}$$

Cost function in Jk blending method:

$$J(x) = J_b + J_o + \frac{1}{2}(x - x_{ls})^T V^{-1}(x - x_{ls}) = J_b + J_o + J_k$$

Physics schemes in AROME / C-LAEF

Stochastic perturbation of total model tendencies: SPPT (ECMWF)

Standard SPPT: Perturbation of total model tendencies (Buizza et al., 1999; Palmer et al., 2009)

Stochastic perturbation of partial model tendencies: pSPPT (ZAMG)

Radiation scheme

$$\frac{\delta T_1}{\delta t} * (1+P1)$$

Shallow convection scheme

$$\frac{\delta T_2}{\delta t} * (1 + P2), \frac{\delta Q_2}{\delta t} * (1 + P2), \text{ etc}$$

Turbulence scheme

$$\Rightarrow \frac{\delta T_3}{\delta t} * (1+P3), \frac{\delta Q_3}{\delta t} * (1+P3), \text{etc.}$$

Microphysics scheme

$$\frac{\delta T_4}{\delta t} * (1 + P4), \quad \frac{\delta Q_4}{\delta t} * (1 + P4), \text{ etc.}$$

- In pSPPT the partial tendencies of T, Q, U, V are perturbed directly after each parametrization
- Influence on subsequent schemes
- Different perturbations are applied to the physics schemes
- In C-LAEF we need 4 different perturbation patterns with different temporal and horizontal scales

Stochastic perturbation of partial model tendencies: pSPPT (ZAMG)

Physical consistency

Tapering function ß (turbulence)

Meteorologie und

eodynamil

Stochastic physics in C-LAEF: Hybrid system (HS)

- Stochastic perturbation of model tendencies showed promising results, especially pSPPT, still some restrictions
- Stochastic perturbation of key parameters (SPP, Ollinaho et al., 2017) at process level in the turbulence scheme (see table)
- Hybrid system (HS): Combination of pSPPT with parameter perturbation in turbulence

Parameter	Range	Description	
XLINI	0-0.1	Minimum BL89 mixing length	
ХСТД	0.98 - 1.2	Constant for dissipation of potential temperature	_
		and mixing ratio	Pa
ХСТР	2.325 - 4.65	Constant for temperature-vapor pressure	tur
		correlation	
ХСЕР	1.055 - 4.0	Constant for wind-pressure correlation	wr
XCED	0.7 – 0.85	Constant for dissipation of total kinetic energy (TKE)	ре
XALPSBL	3.75 – 4.65	Value related to the TKE universal function within the surface boundary layer	

 $\alpha_{i'} = \exp(P) * \alpha_i$

Parameters in the turbulence scheme which are stochastically perturbed.

- Energy conservation
- Tapering function

 Surface EDA, perturbation of surface variables

Results of summer test period

Ensemble spread (solid) and RMSE (dashed) for surface parameters in July 2016. RMSE is given as difference to the reference run.

Results of summer test period

CRPS for temperature and wind speed at 500 hPa and 850 hPa in July 2016.

Results of winter test period

Ensemble spread (solid) and RMSE (dashed) for surface parameters in January 2017. RMSE is given as difference to the reference run.

Results of winter test period

Meteorologie une Geodynamik

CRPS for temperature and wind speed at 500 hPa and 850 hPa in January 2017.

Precipitation verification

Ensemble spread (solid) and RMSE (dashed) for precipitation in July 2016 (left) and January 2017 (right). RMSE is given as difference to the reference run.

C-LAEF: Conclusions & Outlook

- C-LAEF is an innovative convection permitting ensemble system which is currently under development at ZAMG
- C-LAEF is comprehensive and contains representation of all uncertainties in NWP (IC, LBC, model error)
- Ensemble JK significantly increases ensemble spread in the first hours
- Stochastic physics additionally increases spread and reduces RMSE during the whole forecasting range
- Combination of tendency perturbations and parameter perturbations showed best results for model error representation
- Outlook: Perturbation of surface parameters (ESDA, observation perturbation on the surface)

