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Why develop a spatial verification scheme  targeted  for extremes  e.g. of precipitation? 
 
 Precipitation events  are  expected to become more extreme in an expected warmer 

future climate   
 

 Users of NWP forecasts including the society in general expect to be warned against  
expected extreme events  
 

 In order to improve NWP predictions of extreme events  it is desirable to monitor via 
suitable  NWP scores whether  the models get  better skill in predicting extremes  

 
 
References:  

Bao, Jiawei ,  Steven C. Sherwood,  Lisa V. Alexander and Jason P. Evans , 2017:   Future increases in extreme precipitation 
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`SLX´ verification scheme   
( Structure of Local eXtremes ) 

Characteristics   

 SLX is a generalization of the scheme  SWS by Sass and Yang (2012) verifying  
extreme point observations in a forecast neighborhood. 
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Multi-year timeseries of SWS  (`Significant Weather Score ´) computed on the basis 

of 3 highest and 3 lowest  observations  compared with a corresponding model grid 

point extreme in a neighborhood around observation 
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`SLX´ verification scheme   
( Structure of Local eXtremes ) 

Characteristics   

 
 

 SLX  scheme is flexible  - e.g.  a score fuction can  be defined in collaboration with 
users, e.g. depending on the parameter verified and its applications   

 
 
 Flexibility also  exists  with regard  to the partitioning of model area into subareas 

verified separately , and  all combined. 
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The computations of SLX  in  the  case of only one area equal to the entire model area:  
Neighborhoods around observed (analyzed)  minimum and maximum respectively are considered 
with regard to correspondingly forecasted minimum and maximum respectively.  Similarly observed 
(analyzed) neighborhoods around forecasted minima and maxima respectively are considered. An 
outer region of size  B  makes it possible to include a neighborhood being symmetric in the whole 
internal domain.   
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Area 1 

Area 2 

Area 3 

Area 4 

The computations of SLX  may be  divided into several subareas.  
The combined SLX-result  is the average of results from all sub-
areas 
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SLX  score function used in  the present study.  The value  0  is assigned to no skill and 

1  to perfect skill.   The function is essentially a function of the fraction between 

forecast and analysis  involved in the comparison.     
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Total score  SLX  is a  weighted sum of the above mentioned  local scores  computed in a 
neighborhood comparison  
 
 
SLX = ¼ ( SLXob-max + SLXob-min + SLXfc-max + SLXfc-min )  
  
SLXob-max  = S ( Pob-max,   Pfe-max/ Pob-max  ),   Pfe-max  = Max{  Pfe (i, j, τ) } ,  (ob-max) 
                                                                 0 < τ ≤ τm,    i ϵ [ 1, …, N] ,  j ϵ [ 1, …, N]            (1) 
  
SLXob-min  =  S ( Pob-min,   Pfe-min/ Pob-min  ),     Pfe-min  = Min{  Pfe (i, j, τ ) } ,  (ob-min) 
                                                                 0 < τ ≤ τm,   i ϵ [ 1, …, N] ,  j ϵ [ 1, …, N]             (2) 
  
SLXfc-max   = S ( Pfc-max,   Poe-max/ Pfc-max  ),     Poe-max  = Max{  Poe (i, j, τ) } ,  (fc-max) 
                                                                 0 < τ ≤ τm ,  i ϵ [ 1, …, N]   , j ϵ [ 1, …, N]            (3) 
  
SLXfc-min     =  S ( Pfc-min, Poe-min/Pfc-min  ),       Poe-max  = Min{  Poe (i, j, τ) }  , (fc-min)  
                                                                 0 < τ ≤ τm ,  i ϵ [ 1, …, N]  , j ϵ [ 1, …, N]             (4) 

`SLX´ verification scheme   
( Structure of Local eXtremes ) 
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               Constant fields            Constant fields over parts of the grid  
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FC=1.0-OB FC=0.5-OB

FC=2.0-OB If the forecast and analysis fields are 
constant or constant over part of the 
domain all points qualify equally,  i.e.  a 
weighted  average should take  place.  
This is not changing result if the entire 
fields are constant,  but has impact if one 
field is only constant over a fraction of the 
area verified ! The computational scheme 
takes care of this ! 
 

Example 1 : Constant or partially constant fields  
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Schematic representation of parallel  precipitation 

band displaced  

 Combined SLX  as a function of  displacement (grid 

points)  between  end  of observed precipitation band  

and start of forecasted precipitation band.  NTOL is 

size of the neighborhood.  NTOL is the size of the 

neighborhood 

Example 2 : Precipitation bands displaced 
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Example 3 : Noisy fields with different size  

SLX as a function of neighborhood size for different dimension 
(symmetric) noisy pattern, e.g. with values  0  and 1 .     
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Increasing separation between  forecast field  range  and observed field range 
implies that SLX decreases    no `hedging´ possible by increasing the bias 

Examples illustrating  robustness to `hedging´ 
( effects of bias ) 
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 b - c    b + c 

                 
OB = b    
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  b + c       b - c               

   FC = b    

Example 4 a-d   
  
Observed and forecast  `background field ´  b = 5,10,20,40 (mm) 
Minima ( b-c ) and Maxima (b+c) , c = 5mm  are displaced as  
shown in the figures.  
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SLX –components increase as the field level increases   
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Example 5 a-d   
  
Observed `backgound field ´ b  = 5 mm in all experiments  5a-d 
 Forecast  `background field´ d  = 5, 10 ,20, 40 (mm) 
Minima  and Maxima are displaced as in examples 4a-d , 
c = 5mm  as in experioare displaced as shown in the figures.  
Experiment  4a  equals 5a 
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SLX –components decrease  as the field level difference increases    



Bent Hansen Sass 

EWGLAM meeting 

Sofia 2019 

Simulation of SLX for 5 year operational results  of June and December 
( 12h accumulated precipitation data for Danish station list of ~30 stations  are used  and 
compared with 12 h forecast accumulations  (6h -18h forecasts) over the 5 years.  
 Limitation: The forecast model is not constant over the period.  
 
Approach:  Assume that we can transfer statistics from the 5 year period to synthetic 
observed (analyzed)  and forecasted fields by the following steps:   
 
STEP 1:  Organize all data points , observations and forecasts separately, according to size in 5 classes  : 
Choose an arbitrary number which will determine the selected class which may often be different 
between forecast and observation. 

                                                      
                              
                         class 1                                                                  class2                               class 3                class 4        class 5             

                     
STEP 2:   Convert number chosen (separate for analysis and forecast ) to a value  ( mm accumulation) 
depending on position in interval 

 
STEP 3:  Conversion to entire fields by choosing a characterisic dimension N of (quadratic) grid area , e.g. 
N*N = 10*10 grid points , representative of 12 hour accumulations not changing much on average.  ( e.g. 
correlation between forecasted neigboring grid point in 12h accumulations is normally high).   The 
statistical choice of each N*N points are repeated for enough N*N  entities to cover the whole verification 
area.  

 
STEP 4:  Any number of different consecutive synthetic fields may be verified to investigate  
a typical score of SLX.  In the present study  the average score of 500 synthetic fields is 
studied   
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500 runs,  statistics valid for June (black solid line) and  Dec. ( black dashed 
line).  Similarly blue lines apply to 500 runs with imposed limitation that all 
cases had observed fields of precipitation > 1mm  ( harder to predict) 

Examples:  500 synthetic fields verified  
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                    Conclusions and Outlook  

 The  SLX scheme fulfils some desirable properties for operational  use of 
precipitation forecasts.   
 

 It is a generalization of a scheme already used operationally in DMI and is 
a natural step when  trying to verify  precipitation  spatially. This is now 
possible from 2019 at DMI using quality controlled precipitation analyses   
combining radar data with ground based in situ observations.  

 
 The scheme is currently written in R and may therefore be implemeted in  

HARP verification package.  
 

 Generalization to ensembles is an interesting extension. An obvious choice 
is to  verify  the median of an ensemble.  
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END 
 
 

Thanks for your attention    
много благодаря 
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