

Michail Diamantakis on behalf of Patricia de Rosnay and Gianpaolo Balsamo

Thanks to the ECMWF coupled assimilation and coupled processes teams and many others

Embracing an Earth System approach

- Consistency of the infrastructure and coupling approaches across the different components
- Modularity to account for the different components in coupled assimilation

Land use maps: Differences ESA-CCI vs GLCC1.2 (current IFS)

• An increase in low vegetation and decrease in high vegetation fraction.

- Hybrid types (interrupted or mixed forest) would disappear.
- → substantial impact via (roughness, albedo, canopy resistance..)

Mapping urban areas for future
Collaboration (+plots)
Robin Hogan

(most common city)

- building height:
- centre = 25 m
- suburbs = 7 m

Characteristic	EMU (reference)	Global Human Sett- lement Layer (JRC)		ECOCLIMAP-SG (Meteo-France)	
Data type	lidar	satellite + machine learning		satellite + table (flexible!)	
Resolution	meters, local	250 m, not yet global		300 m, global	
Build-up volume (Area x Height)	Gross average building height, F.x H (m)	Gross average built height, GABH-BU × NABH (m) 10 10 10 10 10 10 10 10 10 10	<u>good</u> correlation	No data	
Build-up area	Legislation and the second by buildings, F (up)	Built surface fraction, BU (up) 400 20 20 20 20 20 20 20 20 20	major <u>over</u> - estimation! (buildings are mixed with roads)		OVER- estimation of suburbs (table is based on big cities!)
Building height	Arean building height, H (m) (m) (m) (m) (m) (m) (m) (m)	Pet average built height, NABH (m) (u) 20 4 20 20 4 20 20 4 20 20 20 20 20 20 20 20 20 20	strong <u>under</u> - estimation! (~0.5m!)		over- estimation of suburbs (~25.0m!)

Important: to collect globally all urban parameters needed for the model

Extended soil vertical discretisation

Expected: improve surface soil moisture (better correspondence with satellite observation, deeper soil allow access to bigger root zone reservoir,
→ Improve coupling in soil and with the atmosphere

Multi-layer snow on land foreseen for

next operational cycle 2020

Deterministic FC: Diurnal cycle and biases of T2m

Ensemble FC (20 members): CRPS T2m over 60N (Arctic)

Single vs Multi-layer snow pack (H-TESSEL) & emission (CMEM/HUT)

STDV of TB(OBS) – TB(CMEM + HTESSEL) snow-covered area [Global] (w/o glacier) 1 Oct 2017 – 30 Jun 2018

Current snow data assimilation and impact of observations (OSEs)

Winter 2014-2015 (December to April) - Assess the impact of the snow observing system

Expts	SYNOP	National Data	IMS snow cover
0- OL (no snow data assimilation)			
1- Snow DA: SYNOP+IMS	\checkmark		\checkmark
2- Snow DA: SYNOP+Nat (all in situ)	\checkmark	\checkmark	
3- Snow DA SYNOP+Nat+IMS (all)	\checkmark	\checkmark	\checkmark

ECM

combining in situ and IMS, are assimilated.

Impact of IMS satellite snow cover assimilation (case 3-2)

ECMWF

All data assimilated (Synop+Nat+IMS) compared to all in situ data assimilated (SYNOP+Nat) -> Further T2m forecasts error reduction, significant at short range

Impact of National data (case 3-1)

All data assimilated (SYNOP+Nat+IMS) compared to SYNOP+IMS assimilation -> Further T2m forecasts error reduction at medium range

Contribution & complementarities of each observation types to improve T2m forecasts at short and medium ranges

SMOS Neural Network (NN) Soil Moisture assimilation in H-TESSEL

Impact on two-meter air temperature forecasts (JAS 2012) (Reference H-TESSEL with no assimilation: Open Loop 'OL')

- No screen level, soil temp & snow analysis
- Uses of ERA-Interim Screen analysis as inpu 'SYNOP'
- Stand-alone atmospheric forecasts

→ Proof of concept of SMOS NN assimilation for NWP initialisation

CECMWF

NN trained on offline H-TESSEL runs forced by ERA-Interim

SMOS Neural Network (NN) Soil Moisture assimilation in the IFS

EC SMOS: NN trained on operational IFS

Implemented in the IFS with the new EDA-SEKF soil analysis

(CTRL: IFS cycle 45r1)

ECCIVITY EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

de Rosnay et al, in prep, 2019

IFS impact (EDA-SEKF and SMOS neural network)

ECMWF SMOS Neural Network soil moisture

compared to ERA5 in 2016

NN trained on operational IFS

ERA5 reanalysis replaces ERA-Interim from 2019

ERA5, two operational land products:

	ERA-Int	Era-Int/Land	ERA5	ERA5-Land
Period covered	Jan 1979 – NRT ^(*)	Jan 1979 – Dec 2010	Jan 1979 - NRT	Jan 1979 - NRT
Spatial resolution	~79km / 60 levels	79 km	~32 km / 137 levels	~9 km
Model version	IFS (+TESSEL)	HTESSEL cy36r4	IFS (+HTESSEL)	HTESSEL cy43r1
LDAS	cy31r1	NO	cy41r2	NO
Output frequency	6-hourly Analysis fields	6-hourly Analysis fields	Hourly (three-hourly for the ensemble)	Hourly (three-hourly for the ensemble)

Hersbach et al., QJRMS submitted 2019

Summary: Ocean modelling upgrades, progress and plans

•NEMO4.0 (in progress)

•New elements

•Major code restructuring

- Collaborations
 - Ocean-Model WG
 - JMMP
- Offline/Coupling test
 - Ongoing
 - Coupled testing foreseen end 2019

see Kristian's ppt

NEMO3.4 coupled documented in

Mogensen et al, 2018,

Effects of ocean on weather forecasts

https://www.ecmwf.int/en/newsletter/1

56/news/effects-ocean-coupling-

weather-forecasts

•EC-WAM upgrades

<u>New developments</u>

- Ardhuin (2010) physics in 46r1
- Freak waves parameters upgraded (Peter) in 46r1
- Charnock change for strong winds in 47r1
- Collaborations
 - Imperial College (NERC-funded)
- Ongoing/Planned
 - NEMO4 wave effects
 - Grid-resolution/extension TCO grid (test planned)

Wave Physics impact documented in ECMWF news item for 46r1

https://www.ecmwf.int/en/about/media-

centre/news/2019/upgrade-boost-qualityor MEDIUM-RANGE WEATHER FORECASTS ocean-wave-forecasts

SI3 (in progress) + coupling tests

•New elements

- Multi-category ice model
- Thermo-halo-dynamics (salt-effects)
- Melt ponds and updated albedo
- Prather advection or UMx under testing
- EVP rheology
- Offline/Coupling test
 - Ongoing with LIM2 in APPLICATE (tight coupling)
 - Optimising performance SI3 w.r.t. LIM2
 - Coupled SI3 testing foreseen end 2019

15

Sea-ice coupling documented in Keeley, S and K Mogensen, 2018, Dynamic sea ice in the IFS <u>https://www.ecmwf.int/en/newsletter/</u> 156/meteorology/dynamic-sea-ice-ifs

Summary: Land modelling upgrades, progress and plans

r_{sk.7}

•HTESSEL-CAMA-Flood

Improvements

River discharge coupled to runoff passive in 46r1
Post-processing of tiles diagnostics in 47r1

- Collaborations
 - CMEMS
 - CONTROL
 - Global Routing
 - HTESSEL-Calibration
- Offline/Coupling test

ECMWF

- Ongoing offline testing
- ML10 soil coupled test 2020
- Coupled inundation test 2020

•SNOW ML5

Lowest atmospheric model level

K₁

K₃

K₄ K_B

(1- α_s)K_s L_s H_s

forest snow

 $R_s (1 - \alpha_{sf})K_s L_s H_s E_s$

R.

 R_2

R₃

exposed snow

Γ_{sk.5}

Improvements

EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

•ML5 Physics•Arduini et al. (2019) passive in 46r1

G_B

- Ongoing/Planned
 - ML GRIB input/output (collaboration with FD/IFS)
 - ML coupled to ice (APPLICATE)
 - Snow Albedo revision (SnowAPP/APPLICATE-2)
 - Blowing snow
 (ISSI-BJ-HTP)
 Orsolini et al. (2019)

•WATER Tile Mapping

•Improvements

•GLDBv3 + new LSM/CL ready for 48r1

- Ongoing/Planned
 - Extend to other physiography fields
 - Focus ESA-CCI Maps
 - Orography and Bathymetry at native 1km
 - Choulga et al (2019) on Water Mapping

•Improvements

- City mapping (C3S ITT)
- Multi-cities OSM
- CO2 mapping
- CO2 uncertainties
- CO2 ensemble
- Offline/Coupling test
 - Ongoing Tier-2 ENS
 - Prepare CHE-2

McNorton et al. (2019) on CO2 model error specification

Choulga et al (2020) on CO2 emission uncertainties

Involving EWGLAM surface community linking NWP & Copernicus Applications

ESA-CCI Land cover

•C3S / CAMS / CEMS / ESA-CCI

Collaborations

•ESA & JRC (mapping)
•MF-Toulouse (mapping)
•LSCE-Paris (biosphere)
•Imperial (Waves, biosphere)

•U Lisbon & UFZ & MPI-Jena (LSM)

•<u>Target</u>

Updated/best surface for
Weather/Hydrology/ESM
Offline portability for external testing

397 395 39

CHE+VERIFY GA

•CHE / CHE-2

- <u>Collaborations</u>
 - JRC CO2/Water/Urban
 - CHE/VERIFY Consortium
 - CHE Integration (WP5) Workshop
 - IG3IS/Transcom Workshop
 - CHE-2 proposal preparation

<u>Target</u>

Reliable CO2 emissions with

IEDIUM-RANGE WEATHERURGORIE taisity estimations

• Realistic Biosphere/Anthropogenic

CHE project

Member-States & External WGs

Collaborations

•METEO-FRANCE (Vegetation/Urban)

•UKMO (Ocean/Ice/Snow)

- •DWD (Soil texture), NILU (Himalaya)
- •UU (ClimAfrica)
- •FMI (ISWG-4)

•GEWEX & WGNE projects

•<u>Target</u>

•Increase use of Earth Observations •Share priorities focus at ECMWF

Summary and outlook

- Earth system approach \rightarrow Coupling land-atmosphere-hydrology-ocean for NWP and reanalysis
- Multilayer model and DA, land surface mapping, SMOS NN DA, EDA-SEKF,
- The CO2 Human Emission EU-funded Project will drive forward requirements for a global km-scale Monitoring System

