

Ensemble developments in COSMO

Chiara Marsigli Deutscher Wetterdienst

COSMO Working Group on Predictability and Ensemble Methods

Marco Alemanno, Dimitry Alferov, Marco Arpagaus, Elena Astakhova, Grzegorz Duniec, Christoph Gebhardt, Francesca Marcucci, Andrzej Mazur, Giacomo Pincini, Mikhail Tsyrulnikov, Andre´ Walser

The COSMO ensembles

http://www.cosmo-model.org/content/tasks/workGroups/wg7

The COSMO ensembles

- the COSMO members develop and maintain several ensemble systems at the convection-permitting scale:
 - COSMO-D2-EPS, by DWD, operational, 2.2 km
 - COSMO-E, by MCH, operational, 2.2 km
 - TLE-MVE, by IMGW, operational, 2.8 km
 - COSMO-2I-EPS, by Arpae, pre-operational, 2.2 km
 - COSMO-IT-EPS, by COMET, pre-operational, 2.2 km
 - COSMO-Ru2-EPS, by RHM, for research, 2.8 km
- COMET operates an ensemble at 7 km, COSMO-ME-EPS
- COSMO-LEPS is the Consortium ensemble, running since 2002, 7 km

COSMO-E vs IFS-ENS over Switzerland for summer (JJA) 2018

P. Kaufmann, A. Walser - MCH

Model perturbation

- Developing a model for the model error (additive perturbation)
 - at DWD
 - at RHM
- Test of new model perturbations at MCH
 - Implementation of **iSPPT** in COSMO-E
 - evaluation of KENDA analysis increments to be used as model perturbations
- Parameter perturbation:
 - DWD: Transfer to ICON run at Limited-area (ICON-D2-EPS)
 - IMGW: combination of perturbations of few soil and upper air parameters

Model perturbation

- Developing a model for the model error (additive perturbation)
 - at DWD
 - at RHM
- Test of new model perturbations at MCH
 - Implementation of **iSPPT** in COSMO-E
 - evaluation of KENDA analysis increments to be used as model perturbations
- Parameter perturbation:
 - DWD: Transfer to ICON run at Limited-area (ICON-D2-EPS)
 - IMGW: combination of perturbations of few soil and upper air parameters

EM-scheme: model for the model error (E. Machulskaya)

$$\frac{\partial \psi}{\partial t} = \left[\frac{\partial \psi}{\partial t}\right]_{\det} + \eta(t)$$
$$\sigma\xi(t)$$

$$\frac{\partial \eta}{\partial t} = -\gamma \eta + \gamma \nabla (\lambda^2 \nabla \eta) +$$

 ψ : prognostic variables (T, QV, U, V) $\eta(t)$: noise field / model error, correlated in time and space $\xi(t)$: Gaussian noise σ, γ, λ : standard deviation and spatial and temporal correlation

 γ , λ and σ are weather-dependent and are derived from past data

First extensive experiment of the scheme used in ensemble forecast started

C. Gebhardt, DWD

AMPT model perturbation scheme

- Additive Model-error perturbations scaled by Physical Tendencies
- Based on the Stochastic Pattern Generator (SPG, Tsyrulnikov and Gayfulin 2017)
- The SPG works on 2-D and 3-D limited area spatial domains with meaningful and tunable spatio-temporal structure
- The perturbations are the mutually uncorrelated spatio-temporal (SPG-generated) random fields scaled by the area averaged physics tendency |P|
- $|\mathcal{P}|$ is updated every hour at every level and for every field

M. Tsyrulnikov, E. Astakhova - RHM

AMPT model perturbation scheme

- Domain centered at Sochi. Half of the domain is Black sea, half is land with mountains.
- Resolution: 2.2 km, 50 levels
- Ensemble size 10
- Initial and lateral boundary conditions from COSMO-LEPS adapted for a larger Sochi region (resolution 7 km), made by the Italian colleagues.
- Time period: February March 2014

M. Tsyrulnikov, E. Astakhova - RHM

AMPT model

perturbation scheme

Deutscher Wetterdienst Wetter und Klima aus einer Hand

AMPT model perturbation scheme

- Status:
 - Tapering in the lower troposphere is switched off
 - An upper-level humidity tapering is introduced
 - Hydrometeors: only at grid points with non-zero concentrations the perturbations are added
- Outlook:
 - Implementation of SPG/AMPT in ICON (in the LAM setup).
 - Setting up a new LAM-EPS in central Russia
 - Improvement in the generation of AMPT wind perturbations (switching from u, v to stream function and velocity potential)
 - Further investigation of the role of humidity and hydrometeor perturbations

M. Tsyrulnikov, E. Astakhova - RHM

Model perturbation

- Developing a model for the model error (additive perturbation)
 - at DWD
 - at RHM
- Test of new model perturbations at MCH
 - Implementation of **iSPPT** in COSMO-E
 - evaluation of KENDA analysis increments to be used as model perturbations
- Parameter perturbation:
 - DWD: Transfer to ICON run at Limited-area (ICON-D2-EPS)
 - IMGW: combination of perturbations of few soil and upper air parameters

iSPPT (independent SPPT)

independent stochastically perturbed physical tendencies (Christensen et al., 2017):

$$\frac{\partial X}{\partial t} = D^X + K^X \sum_{i=1}^N (1 + rand_i) P_i^X$$

- X = meteorological variable (e.g. T, U, V etc.)
- D = dynamics
- K = horizontal diffusion
- i = radiation, turbulence,
 - microphysics, shallow convection
- P = physical parametrization tendency

iSPPT: experiment setup

- ~ COSMO-E
- Members: 16
- Lead time: 48 hours
- Analysis: KENDA
- LBCs: IFS-ENS
- Time period summer:
- Time period winter:
- Number of runs per exp:

06-06-2018 to 26-06-2018 08-12-2017 to 28-12-2017 10 (initialized every 2nd day)

iSPPT: experiment

	SPPT	iSPPT		
Exp ID	200	204	206	
	Ref	Dec	Dec	
dlat/dlon_rn_rad	5.0	5.0	5.0	
dlat/dlon_rn_shc		5.0	2.0	
dlat/dlon_rn_mic		5.0	0.5	
dlat/dlon_rn_tur		5.0	1.0	
stdv_rn_tur	1.0	1.0	1.0	F
stdv_rn_rad		1.0	1.0	
stdv_rn_shc		1.0	1.0	
stdv_rn_mic		1.0	1.0	
range_tur	0.8	0.8	0.99	
range_rad		0.8	0.99	
range_shc		0.8	0.99	
range_mic		0.8	0.99	

Courtesy Clemens Wastl, ZAMG

- spread loss due to smaller correlation length counteracted with larger range for random numbers
- > range > 1.0 change sign of tendency \rightarrow model crashes

RMEV (spread) vs. **STDE** (error), winter

KENDA ensemble mean analysis used as truth

RMEV (spread) vs. **STDE** (error), summer

Temperature, lowest model level

L. Füzer, A. Walser, MCH

KENDA ensemble mean analysis used as truth

Summary of iSPPT experiment results

- iSPPT does not improve spread-error relationship in COSMO-E per se
- in contrast to Christensen et al. (2017) no tendencies from deep convection
- risk for unphysical values and stability issues (CFL) with larger ranges than +/-0.9 for the random numbers
- model crashes with range > 1, i.e. switch sign of tendency
- since we push the perturbations to the limits the additional flexibility provided by iSPPT is hardly of any use in COSMO-E

as model perturbations

 estimate to what extent the Analysis Increments can be considered as a proxy for model error to generate ensemble perturbations (Piccolo et al., 2017)

Model perturbation

- Developing a model for the model error (additive perturbation)
 - at DWD
 - at RHM
- Test of new model perturbations at MCH
 - Implementation of iSPPT in COSMO-E
 - evaluation of KENDA analysis increments to be used as model perturbations
- Parameter perturbation:
 - DWD: Transfer to ICON run at Limited-area (ICON-D2-EPS)
 - IMGW: combination of perturbations of few soil and upper air parameters

ICON-D2-EPS

- ~ 2.1 km icosahedral grid, 65 vertical levels
- 20 members
- 00, 03, 06, 09, 12, 15, 18, 21 UTC
- 27 hours (45 hours for 03 UTC) (planned: 48 hours)
- perturbation of
 - BC: ICON-EU-EPS
 - physics (randomized pert.
 2-3 different values for each of 17 parameters)
 - IC: KENDA
- pre-operational: October 2019
- operational in Q4 2020

Bias and RMSE for 00 UTC runs (EPS mean)

ICON-D2-EPS

COSMO-D2-EPS

No perturbed Initial Conditions

Other ensemble developments

- **post-processing** methods for the CP ensembles (severe weather)
 - Calibration at IMGW
 - Product generation at COMET (SRNWP-EPS of EUMETNET)
- improvement of **Initial and Boundary Conditions** for the CP ensembles
 - MCH: compare COSMO-E with IFS-ENS vs. ICON-EPS BCs, primarily for short-range forecasts
 - DWD: test selection of KENDA analyses for initialising the ensemble forecast
- transition to **ICON-LAM** for the ensembles

TLE-MVE for an High

Impact Weather event

Deutscher Wetterdienst Wetter und Klima aus einer Hand

radar reflectivity forecast ensemble mean

observed reflectivity Polish radar network

from Taszarek *et al.* (2019): Derecho Evolving from a Mesocyclone

A. Mazur, G. Duniec, IMGW

25

9

Single case – HIW event from 7 to 0.7km

Supercell Detection Index (SDI), ensemble mean

DWD

Concluding remarks

- It is difficult to perturb the model!
- Development of a model for the model error is promising
- To be combined with studying the predictability and uncertainties in the processes, to go towards stochastic parametrizations
- Perturbed parameters still provide a valuable and "safe" approach
- No positive impact of using iSPPT with respect to SPPT in Switzerland
- How to use and interpret the ensemble forecast? Work (with the forecasters) on ensemble interpretation, products, upscale, neighbourhood ...

