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Consortium in transition

The current COSMO model (with the ‚Runge-Kutta‘ dyn.core)
is slowly phased out during the next years in the COSMO consortium.

• DWD plans to replace COSMO-D2 by ICON-D2 in Q4/2020

• …

• MeteoCH plans the replacement ~2023 ( adaptations to GPU computers!)

This migration is prepared by all COSMO partners in the priority project
‚Transition of COSMO to ICON-LAM (C2I); project leader: Daniel Rieger (DWD)

Therefore, no further development work at the dyn. core will be done from now
on (exception: higher-order scheme by Univ. Cottbus, A. Will)

However, COSMO-EULAG will be further developed and probably
will go into operations at IMGW (Poland) (currently pre-operational)



COSMO-EULAG

Setup of experiments:

• Operational COSMO-2 domain used by Meteo-Swiss, 60 vertical levels

• Entire June 2013, 48-hour forecasts, verification by VERSUS software

• Numerical and Smagorinsky diffusion are turned off for COSMO-EULAG

Topographical map of the domain Station network for surface verification

Damian Wojcik (IMGW)

Investigations:

1. TKE advection: replacement of the Bott scheme by MPDATA-A

2. Selection of an optimal MPDATA advection version



Replacement of the Bott TKE adv. scheme by the MPDATA-A scheme

Reliability diagrams for precipitation
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The verification scores of COSMO-EULAG do not alter significantly with that change.
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Selection of an optimal adv. sch. (MPDATA-A vs. MPDATA-M)

MPDATA-A
2nd order

MPDATA-M
2nd order

Advected field ψ Ψ+c, c → ∞

Accuracy Lower Higher

Diffusion More Less

Smolarkiewicz and Clark (JCP, 1986), 
Smolarkiewicz and Grabowski (JCP, 
1990).

The Rotating Cone Test Case – results after 6 revolutions

MPDATA-A 2nd order MPDATA-A 3rd order MPDATA-M 2nd order

Initial 
condition
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MPDATA = upwind advection with 
iterative improvement by 'anti-diffusive' 
fluxes (nonlinear) 



Selection of an optimal advection scheme (MPDATA-A vs. MPDATA-M)

option A outperforms M for: T2m, MSLP, 10-m wind speed,  
and for total cloud cover (the latter except only 36-48 h for RMSE)

TCC
T2m

MSLP v10m



MPDATA-A vs. MPDATA-M

• For upper-air wind speed RMSE is usually lower for A
• A provides precipitation forecasts with slightly improved 

frequency bias
• Additionally: in the A simulations lower vertical velocities 

within convective updrafts are observed (not shown)

COSMO-EULAG with the more diffusive scheme, MPDATA-A, 
provides forecasts having slightly better verification scores.

Precipitation: 1mm and more

A M

1-FAR 1-FAR

24h

36h

Upper-air wind speed
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Summary

1. The more accurate MPDATA-M advection delivers worse scores than
MPDATA-A. Possible reasons

1. might be a hint for too less (horizontal) diffusion ?

2. verification issue: better scores for more diffusive fields ?

2. Consistent, optimized and extensively tested COSMO-EULAG v5.5

3. The computational performance was slightly improved

4. COSMO-EULAG works semi-operationally in IMGW-PIB since winter
2019 with nudging and with competitive verification scores

5. Future work may involve comparison of COSMO-EULAG and ICON-
LAM for high spatial resolutions (over Poland) and with more
advanced verification

Damian Wojcik (IMGW)
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A possible alternative dynamical core 
for ICON based on  
Discontinuous Galerkin Discretisation 

Michael Baldauf (Deutscher Wetterdienst)



Discontinuous Galerkin (DG) methods in a nutshell

From Nair et al. (2011) in 
‚Numerical techniques for global atm.
models'

weak formulation

Finite-element ingredient

Finite-volume ingredient

 ODE-system for q(k)

Lax-Friedrichs flux
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e.g.
Cockburn, Shu (1989) Math. Comput.
Cockburn et al. (1989) JCP
Hesthaven, Warburton (2008): 

Nodal DG Methods

e.g. Legendre-Polynomials

Gaussian quadrature for the integrals of the weak formulation
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DG – Pros and Cons

• local conservation

• any order of convergence possible

• flexible application on unstructured 
grids (also dynamic adaptation is 
possible, h-/p-adaptivity)

• very good scalability

• explicit schemes are easy to build 
and are quite well understood

• higher accuracy helps to avoid 
several awkward approaches of 
standard 2nd order schemes: 
staggered grids (on 
triangles/hexagons, vertically heavily 
stretched), numerical hydrostatic 
balancing, grid imprints by pentagon 
points or along cubed sphere lines, 
…

• high computational costs due to 

• (apparently) small Courant
numbers

• higher number of DOFs

• well-balancing (hydrostatic, perhaps 
also geostrophic?) in Euler equations 
is an issue (can be solved!)

• basically ‚only‘ an A-grid-method, 
however, the ‚spurious pressure 
mode‘ is very selectively damped!
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but currently far away from this, only a toy model for 2D problems exists with:

• explicit time integration DG-RK (with Runge-Kutta schemes) or
horizontally explicit-vertically implicit (DG-HEVI) (with IMEX-Runge-Kutta)

• ‚local DG‘ (LDG) option for PDEs with higher spatial derivatives 

• use of a triangle grid (also on the sphere) is optional

Target system: ICON model
(Zängl et al. (2015) QJRMS)
• operational at DWD since Jan. 2015

(global (13km) and nest over Europe (6.5km))
• convection-permitting (2.2km): Q4/2020

• horiz.: icosahedral triangle C-grid, vertic.: Lorenz-grid
• non-hydrostatic, compressible
• mixed finite-volume / finite-difference (mass, tracer mass conservation)
• predictor-corrector time-integration  overall 2nd order discretization
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Test case: falling cold bubble

Testsetup by Straka et al (1993)

Test properties:
• test of dry Euler equations (without Coriolis force)
• unstationary
• strongly nonlinear
• comparison with reference solution from paper
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dx=dz=200m

dx=dz=200m

Reference solution 
from Straka et al. (1993)

COSMO DG explicit

Faktor 512
in comput. time

Faktor 4.3
in comput. time

2nd order

3rd order
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colors : simulation with p=2/RK3-SSP
(i.e. 3rd order explicit DG) 

blue lines: analytic solution for compressible, 
non-hydrostatic Euler eqns. 
(Baldauf, Brdar (2013) QJRMS)

setup similar to Skamarock, Klemp (1994) MWR

Linear gravity/sound wave expansion in a channel

x=500m, z=250m

Exact 3rd order convergence for 
w and T‘:
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Test case: flow over steep mountains, vertically stretched grid
Schaer et al. (2002) MWR    (case 5b: U0=10m/s, N=0.01 1/s)

Horo = 1000m, 
max = 38°

Explicit DG simulation (3rd order) remains stable even for steeper slopes!
(remark: diffusion switched off  strong gravity wave breaking occurs)

with vertical grid stretching ~1:20, zmin~50m

Horo= 2000m, 
max = 57°

Horo = 3000m, 
max = 61°



M. Baldauf (DWD) 17

Horizontally explicit - vertically implicit (HEVI)-scheme with DG

References:
Giraldo et al. (2010) SIAM JSC: propose a HEVI semi-implicit scheme
Bao, Klöfkorn, Nair (2015) MWR: use of an iterative solver for HEVI-DG
Blaise et al. (2016) IJNMF: use of IMEX-RK schemes in HEVI-DG
Abdi et al. (2017) arXiv: use of multi-step or multi-stage IMEX for HEVI-DG

explicit implicit explicit implicit

Motivation: get rid of the strong time step restriction by vertical sound wave
expansion in flat grid cells  (in particular near the ground)

• Use of IMEX-RK (SDIRK) schemes: SSP3(3,3,2), SSP3(4,3,3)
(Pareschi, Russo (2005) JSC)

• The implicit part leads to several band diagonal matrices 
 here a direct solver is used (expensive!)
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Test case: falling cold bubble (Straka et al. (1993)
Comparison explicit vs. HEVI scheme

DG explicit DG HEVI

2nd order

3rd order



How to bring DG on the sphere …

Idea to avoid pole problem and to keep high order discretization: 
use local (rotated) coordinates for every (triangle) grid cell, 
i.e. rotate every grid cell towards 0, 0.
 geometry is treated exactly
 transform fluxes between neighbouring cells

shallow water equations 
covariant formulation (here: without bathymetry)



simple triangle grid 
on the sphere
dx ~ 500km:

4th order DG scheme
without additional diffusion
dx~67 km, dt=15 sec.

Barotropic instability test 
Galewsky et al. (2004)



Barotropic instability test 
Galewsky et al. (2004)

FMS-SWM (Geophys. Fl. Dyn. Lab.)
without additional diffusion
dx~60 km (T341), dt=30 sec.

Fig. 4 from Galewsky et al. (2004)

4th order DG scheme
without additional diffusion
dx~67 km, dt=15 sec.

relative vorticity
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Summary

• 2D toy model for
- explicit DG-RK (on arbitrary unstructured grids with triangle or quadrilateral

grid cells) and
- HEVI DG-IMEX-RK
works for several idealized tests (also Euler equations with terrain-following
coordinates), correct convergence behaviour, …

• DG on the sphere by use of local (rotated gnomonial) coordinates

Outlook

• further design decisions: nodal vs. modal, local DG vs. interior penalty vs. …, …

• coupling of tracer advection (mass-consistency)?

• improve efficiency in the HEVI direct solver

• further milestones (for the next years!)

• development of a 3D prototype DG-HEVI solver

• choose optimal convergence order p and grid spacing
estimated: phoriz ~ 3 … 6, pvert ~ 3 … 4   (ptime ~ 3…4)
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Announcement:

The next

„Partial differential equations on the sphere“ – workshop 

will take place at
DWD, Offenbach, Germany
5-9 October 2020


