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NH dynamics as a departure from HPE “~LACE
ALADIN/HIRLAM system dynamics

nwp central europe

1 uses a hybrid terrain following vertical coordinate n based on
hydrostatic pressure w

1 uses hydrostatic primitive equation system (HPE) or fully

compressible nonhydrostatic Euler equations (EE); recently
implemented quasi elastic equation system (QE)

-1 prognostic variables ¢, T, ¢s = In(7s), in EE with w,§ = In(%)

1 let us consider adiabatic system with no moisture

Total time derivative

aw = [ 8
( Y + Yv+n an
Basic principles
Perfect gas Mass Energy Continuity
law conservation conservation equation
Y T Cp P on
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Prognostic equations may be written as

. Y O -
i = —RT2_ 223,

P on
‘Temperature
o BTD

Cp P
Surface pressure
1
. 1l -
s — — —V/ a—wﬁdﬂl
s 3 on
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NH dynamics as a departure from HPE “<~LACE
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We introduce the measure of nonhydrostaticity syy

Horizontal momentum

—

° \V4 N
v = —RT—T( — €NHRTV§
T

— a —
—v¢—fNH(;9—1>v¢
o

Temperature
. RT 7 RT o
T = ——4eng—q
Cp T Cp
Surface pressure
1
[ 1 = 8
g =— —v. | Zgay
T 0 on

Vertical momentum
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Pressure departure
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HYDROSTATIC

SYSTEM with eyg =0

+ NH DEPARTURE
with eyg =1
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The system is closed with diagnostic relations

1
RT O
b = qss—/ == af
. p on

gp Ow p O0U =
—V
RT Om " RT Om ¢

D3 = D+d where d—= —
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[Thanks to Pierre Bénard]

For the SI time scheme we define the isothermal, resting, horizontally
homogeneous reference state X* in the hydrostatic equilibrium given by
3 values T, T}, ;.

We use horizontal divergence D and modified vertical divergence d
instead of v and w for stability reasons.

We define linear vertical operators

Linear vertical operators
1 1 K
G'X = f m X dn/ S*X = —/ m* X dn'
n ™ 7T* O
* 0 * 0
N'X = L [T Xdy L*X:W—<7T ——|—1)X
Ts 0 m*on \m*on
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NH dynamics as a departure from HPE “<~LACE
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When semi-Lagrangian advection is applied

dX

E - M(X)

We linearize around the reference state and get the linear terms £ - X
and the nonlinear terms N (X). Then we treat linear terms implicitly and
nonlinear terms in an iterative centered implicit manner.

st — o L -XtTi4 L. X0 +N(X+<i—1>) + N(X9)

ot 2 2

We get the Helmholtz equation

[1 — %c} xti = x°
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NH dynamics as a departure from HPE “~LACE
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Linearized Euler equations
‘Horizontal momentum | Vertical momentum |
oD od 2
_RG*AT — RT*Aqs — Ay 2= - g
ot RTY

ot
+engRT* (G* — 1) Aq

RT™

oT
o = D+ 57
C
P X = 5D 2(D+d)
RT* . RT* ot =,
+5NH S*D — (D —|— d)
Cp C’U
Surface pressure
ENH — 0 HPE
9 _ D exy = 1 Euler equations
ot
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[Thanks to Fabrice Voitus]
After discretization, the elimination of all variables except D yields
(using »x = %)

P

the reduced system

[1 - 5t2R—TB*A] DT = 0
4

with
vertical structure matrix

B*

*
BHY

Byy +enaByy
7 (1l —2)G*S" 4+ »N*

=1l
2
Bt = (I—xGY) | I1-62—2L L~ T
NH ( 4 )( #RT* ) ( %S™)

EEEEE
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NH dynamics as a departure from HPE “<~LACE
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Conclusions:

1 the whole procedure for the semi-implicit time scheme may be solved

similarly for HPE and EE, only with different elimination matrix
(Fabrice Voitus).

1 Moreover, the elimination matrix may be formulated as the sum of a
hydrostatic part and a nonhydrostatic departure.

J Values 0 < eyg <1 do not have a physical meaning in the full model.
But we may use them in linear model for the semi-implicit time
scheme and investigate the stability of the proposed solution.

1 We may envisage values 0 < eyg < 1 for example in dependence on
the vertical coordinate 7, allowing for smooth transition from fully
elastic nonhydrostatic Euler equations to hydrostatic primitive
equations near the model top where we care about stability more
then accuracy (at least in LAM).
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NH dynamics as a departure from HPE “<~LACE
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Plans:

-1 analysis of the eigenvalues of the vertical structure matrix in case of
eng 70,1

1 stability analysis for a system with yy varying with the vertical
coordinate 7 in the linear model for the SI scheme is (in progress)

1 possible code redesign to include these ideas

J ...

zzzzz
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VFE new formulation for HPE LACE
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Hybrid mass based vertical coordinate definition with hydrostatic
pressure 7 in both HPE and EE systems (Laprise, 1992).

Vertical discretization is based on finite difference method (VFD), or
finite elements method (VFE).

Integral operator definition:

VFD VFE
1 ) L ! on
T
— ~ —dn =~ (Kmy)r,
/ 5 b= D i /O o
0 =1
Layer depth definitions differ:
VED VFE
r = A(n) 4 mB(n) © = A(n) + mB(n)
om SA, 8B,
om = mp— 1™~ m=—— = — + Ts—
_ : . on om om
iy GRS Dplete , 1 requires explicit definition

zzzzz
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VFE new formulation for HPE

To conserve mass we apply

VFE
VFED
0A 0B
L L L s = (Km)p = ( &7) -|-7Ts( 6_771)
L
» om =) 6Ai+m ) 6B 5A 5B
K-—) =0 (K=) =1
=1 = il ( on )L ( on )L
mp =7y = (Ag — Ag) +7.(Bg — By) adjustment needed
satisfied through 6B, = By — B~
-1
TF s, m7 = 0O _ KSE
A; =0,A;=0,B; =0,B; =1 * = o,
1 —
Half levels Full levels (SBZ - —5Bl
top O — eceeeeea- top ... 0 — o
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VFE new formulation for HPE LACE
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Explicit definition of the n coordinate in VFE:
VFE

Zl Py a = 0 gives regular n levels
m = =1 |
- L

zz':l oy

Found unstable for high order VFE schemes with spline order > 5.
Stabilisation requires higher density of levels close to BCs.

VFE

v

B = 0 gives regular n levels
B8~ 1 very dense close to BCs

(1- 6)% + g <1 = cos{%))

Experimentally found that 3 ~ 0.5 is stable for high order operators and
the eigenvalues of the linear model are purely imaginary as needed.

zzzzz
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VFE new formulation in HPE ZLACE
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VFE new formulation for HPE LACE
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General order B-splines are available as the basis for the finite element
method in the vertical.

Analysis of stability was implemented according to (Simmons, Hoskins,
Burridge, 1978). Atmosphere is described by isothermal, resting,
horizontally homogeneous and hydrostatically balanced state given by 2
values T, 7. Nonlinear residual is treated with iterative centered implicit
method with one predictor and one corrector step.

e T dependency " surface pressure dependency
105 = Order3 .

104 = Qrder 5

1.03 Order 7 1.01

102 s D

1.005

1 1

0.995

0.97 0.99
100 150 200 250 300 350 400 50000 60000 70000 80000 90000 100000 110000 120001

Performed for single wave. Reference state with 7% = 350K, T = 50K,
my = 1000hPa and vertical coordinate definition uses g = 0.5.
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Vertical velocity may be defined either on half levels, or on full levels. In

that case there is no vertical staggering at all, but it does not seem to

pose a problem.
FD

VFE half gw VFE full gw

Agnesi shape mountain (h=1000m L=1000m). dx=150m, di=1ik, PC NESC CHEAR FIy Agnesi shape mountain (h=1000m L=1000m), dx=150m, di=10s, PC NESC CHEAP, VFE half gw Agnesi shape mountain {h=1000m L=1000m}, dx=150m, di=10s, PC NESC CHEAP. VFE full gw
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Experiment in IFS with elliptic Agnesi shaped mountain

(h = 1000m, L = 1000m). Used resolution Ax = 150m, At = 10s and

N = 0.02s71,U = 10ms~!. Vertical cross section through the mountain is
shown.
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Real experiment with NH IFS

- total precipitation after 12 hours of integration

VFD VFE with cubic B-splines and
vertical n-levels with § = 0.5
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1 In ALARO configuration the turbulence scheme TOUCANS (Third
Order Moments Unified Condensation Accounting and N-Dependent
Solver) is applied, based on a unified treatment of stability functions,
applicable in both stable and unstable regimes.

J It includes the prognostic equation for turbulent Kinetic energy TKE
and total turbulent energy TTE.

Are we entering the grey zone of turbulence? |

R.Honnert: The grey zone exists from resolutions smaller than 2 times
the boundary-layer height in convective boundary layers.

Do we have to adjust the turbulence scheme in
the grey zone of turbulence?

We estimated the resolved and the subgrid part of TKE as the first step.

MMMMM
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Time evolution of the spatially averaged resolved TKE for ALARO-CMC
at model level 80 during a case of summer convection (21.06.2018.)
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Grey zone of turbulence ZLACE
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SLHD (Semi-Lagrangian Horizontal Diffusion, Vana, 2008) is the
nonlinear horizontal diffusion with three basic parts:
1 grid-point diffusion dependent on the flow deformation

I reduced spectral diffusion acting on the upper domain

1 supporting spectral diffusion

How the turbulence scheme interacts with SLHD? |

Can we control SLHD to act as the horizontal
part of the turbulence parametrization?
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