

Advancing Limited Area Model Verification and Diagnostics Capability through the Enhanced Model Evaluation Tools (METplus) Tara Jensen, NCAR, Boulder, Colorado USA; with M. Mittermaier, the Met Office, Exeter, UK and the rest of the METplus Team the 42nd EWGLAM and 27th SRNWP Meeting Remote Meeting 28 September – 2 October 2020

National Center for Atmospheric Research

Why MET and then METplus?

Comprehensive and unified verification tool - Make R20 more efficient - Provide a consistent set of metrics

Allows researchers and operational scientists to speak a "common verification" language

METplus

User support of unified package provides greater opportunity to train all on verification best practices

METplus

- Selected to be the major component of the verification capability for NOAA, Navy, Air Force, and NCAR in the US and the Met Office in the UK
- ~ 100 traditional statistics and diagnostics using both point and gridded datasets
- Applied to many spatial and temporal scales
- Applied to many applications

Object Based and Spatial Methods

- Originally developed to replicate and extend existing verification systems
- Platform independent and extensible
- Outstanding helpdesk support
- Online and in-person tutorial
- Container Support
- 3500+ users; Int'l and US

METplus

- **Simplify set-up** and running of MET
- **Open up MET's interface** to work with Python algorithms
- **Python-based aggregation** and analysis
- **Python-based plotting** and diagnostics
- Optionally load data into METdb database and display plots through METviewer or METexpress or generate plots of scorecards through the METviewer batch engine

www.github.com/DTCenter/METplus

Python Wrappers for Verification Components

MET Overview v9.1

METPLUS Operational Categorical Statistics Use Case

Providing More Flexibility to Support New Applications

- Python Script Embedding Script
- User writes a script to read or pre-process data
- The script should define a dictionary named **attr** which defines:
 - array must be named **met_data**.
 - **valid** and initialization (**init**) times as strings in YYYYMMDD[_HH[MMSS]] format.
 - **lead** and accumulation (**accum**) times as strings in [HH[MMSS] format.
 - **name**, **long_name**, level, and **units** as strings.
 - grid dictionary defining the projection and grid information in the same way as the gridded NetCDF files produced by MET.
- Support for:
 - Numpy, Xarray, Pandas && Python 3.6.3/3.7

Philosophy: One Tool-Many Applications, Example: GridDiag

- Inventories the data
- Develops the PDF (one or two-dimensional)
- User configurable bins for PDF and percentiles
- Writes out or holds in memory bins or percentiles for use by other tools (Grid-Stat, Point-Stat, MODE, MTD)

Distance Maps

fcst

- Apply threshold of 10-meter VGRD $\geq 5 \text{ m/s}$.
- For each grid point, compute minimum distance to nearest event.
- DMAP statistics are computed by comparing fcst and obs distance maps.

		mation for DMAP (Distance Map) output line type.
	D	MAP OUTPUT FORMAT
Column	DMAP Column	Description
Number	Name	
24	DMAP	Distance Map line type
25	TOTAL	Total number of matched pairs
26	FY	Number of forecast events
27	OY	Number of observation events
28	FBIAS	Frequency Bias
29	BADDELEY	Baddeley's Δ Metric
30	HAUSDORFF	Hausdorff Distance
31	MED_FO	Mean-error Distance from forecast to observation
32	MED_OF	Mean-error Distance from observation to forecast
33	MED_MIN	Minimum of MED_FO and MED_OF
34	MED_MAX	Maximum of MED_FO and MED_OF
35	MED_MEAN	Mean of MED_FO and MED_OF
36	FOM_FO	Pratt's Figure of Merit from forecast to observation
37	FOM_OF	Pratt's Figure of Merit from observation to forecast
38	FOM_MIN	Minimum of FOM_FO and FOM_OF
39	FOM_MAX	Maximum of FOM_FO and FOM_OF
40	FOM_MEAN	Mean of FOM_FO and FOM_OF
41	ZHU_FO	Zhu's Measure from forecast to observation
42	ZHU_OF	Zhu's Measure from observation to forecast
43	ZHU_MIN	Minimum of ZHU_FO and ZHU_OF
44	ZHU_MAX	Maximum of ZHU_FO and ZHU_OF
45	ZHU_MEAN	Mean of ZHU_FO and ZHU_OF

Collaboration with Eric Gilleland, NCAR/RAL.

Point-Stat HiRA

- Collaboration with Marion Mittermaier and USAF.
- Enhance **Point-Stat** to apply the High Resolution Assessment (HiRA) verification logic to deterministic forecasts matched to point observations (Mittermaier, 2014)
- Process neighborhood values as an ensemble forecast (ECNT line type).
- Threshold, compute fractional coverage, and verify as a probability forecast (PCT, PSTD, PRC, and **PJC** line types).
- Allows for some spatial / temporal uncertainty by giving credit for being 'close'.
- Allows for comparison of deterministic and ensemble forecasts via the same set of probabilistic statistics.
- Also allows for comparison of models with different grid resolutions via adjustment of neighborhood size.

Model Forecast White boxes = 0Colored boxes > 0

HiRA Ensemble: • Write ECNT using neighborhood ensemble. • 3x3 NBRHD = 1/9

Threshold Forecast

Blue boxes = event

 $cat_thresh = [>0];$

HiRA Probabilities:

• 1x1 NBRHD = 1/1

• 5x5 NBRHD = 4/25

hira = {	output_flag = {
// Enable or disable	
<pre>flag = TRUE;</pre>	pct = STAT;
// Neighborhood sizes	pstd = STAT;
width = [2, 3, 4, 5];	pjc = STAT;
// Probability thresholds	prc = STAT;
cov_thresh = [==0.25];	ecnt = STAT;
<pre>vld_thresh = 1.0;</pre>	•••
// Neighborhood shape	};
<pre>shape = SQUARE;</pre>	
};	

Neighborhood Probabilities

- Collaboration with NOAA MMM
- Schwartz and Sobash (2017).
- **Ensemble-Stat** pre-processes to computes frequency of event across all ensemble members
- **Ensemble-Stat** pre-processes to compute simple neighborhood probabilities (NEP) and neighborhood maximum ensemble probabilities (NMEP).

Surrogate Severe

- Collaboration with NOAA/NSSL and NOAA/WPC
- Enhanced regridding options to support new **MAXGAUSS** method:
 - Compute maximum value over defined neighborhood
 - Apply configurable Gaussian smoother to the result
- Also includes smoothing options to support new GAUSSIAN method

Practically Perfect Prog and Data Thinning

- Collaboration with NOAA/NSSL, NOAA/WPC, and NOAA/EMC
- Gridding Local Storm Reports reports (Practically Perfect Prog)
- Data thinning of satellite data like NOAA/GOES-16/17
- Point to grid (Point2Grid) tool reads NetCDF output of point pre-processing tools and writes a gridded NetCDF output file.
- Gridded NetCDF output can be read by other MET tools.

StormReps_211.20200500.nc

Use of Scorecards for Short-Range Forecasting

							Dally D	omal	n						co	NUS				
				12 hr	18 hr	21 hr	24 hr	27 hr	30 hr	33 hr	36 hr	12 hr	18 hr	21 hr	24 hr	27 hr	30 hr	33 hr	36 hr	
			>=20																	
	Composite Reflectivity	49	>=30																	
Fraction Skill Score			>=40																	
Fraction Skin Score			>=0.25																	
	3 hr Accumulated Precipitation	49	>=0.5																	▲ NSSLfv3 is better than HRRRv3_cluegrid at the 99% significance level
			>=1.0																	NSSLfv3 is better than HRRRv3_cluegrid at the 95% significance level
			>=20																	No statistically significant difference between NSSLfv3 and HRRRv3_clu
	Composite Reflectivity	1	>=30																	NSSLfv3 is worse than HRRRv3_cluegrid at the 95% significance level
051			>=40																	▼ NSSLfv3 is worse than HRRRv3_cluegrid at the 99% significance level
CSI			>=0.25																	Not statistically relevant
	3 hr Accumulated Precipitation	1	>=0.5																	
			>=1.0																	
			>=20						•											
	Composite Reflectivity	1	>=30									•	•							
_			>=40								•	•	•	•	•	•			•	
Bias			>=0.25		•				•				•	•	•					
	3 hr Accumulated Precipitation	1	>=0.5					•	•								•	•		
			>=1.0						•							•	•	•		
	Temperature	1	sfc													•				
RMSE	Dew Point	1	sfc									•								
	Wind Speed	1	sfc	Ŧ								¥	Ŧ							
	Temperature	1	sfc	¥		Ŧ	•	Ŧ	•	¥	Ŧ	¥	Ŧ	•		•	•		•	
ME	Dew Point	1	sfc							¥	•	•		•	•					
	Wind Speed	1	sfc	•	.			•	•	•	•	•	Ŧ	•						

TC Metrics

- **Track Error**: great-circle distance between the forecast location and the actual location of the storm center (nmi)
- Along-track Error: indicator of whether a forecasting system is moving a storm too slowly/quickly
- **Cross-track Error**: indicates displacement to the right/left of the observed track
- **Intensity Error**: Difference between forecast and actual intensity (kts)
 - Raw intensity errors (bias) vs. absolute intensity errors (magnitude of error)

Graphics courtesy of NCAR TCMT

TC-Genesis

- Collaboration with Dan Halperin, Embry-Riddle Aeronautical University
- Compare forecast of TC-Genesis to actual BEST track and CARQ genesis events
- Configurable options to control genesis definition and matching, both spatially and in time
- Writes contingency table counts and statistics
- Aggregate results using **STAT-Analysis** tool

FA(84)

Figure: Tropical cyclogenesis verification for the NH for 2016. Symbols represent the Best Track (black), hits (green), late Genesis (blue) and false alarms (red).

tc_gen -config TCGenConfig_dev \
-genesis suite[1-4]/2016*/genesis.fort.66* \
-track nhc_atcf/*/*2016.dat \
-v 3 -log run_tc_gen.log

Changing The Perspective: TC-RMW

- Radius of Maximum Wind tool (spherical coordinates)
 - Implement DIA-Post tool from Hurricane Research Division (HRD) to convert model output to stormrelative coordinates.
 - Centered on the lat/lon of interest and computes an azimuthal average over multiple heights and radii.
 - Optionally, normalize by the radius of maximum winds.
 - Tangential wind and radial wind are derived.
 - Write the output to a NetCDF file

18

Use of TDR for TC Development

Image courtesy of Michael S. Fischer, Robert F. Rogers, Paul D. Reasor at NOAA/AOML/HRD Typically, a given mission will have 3–4 passes through the center of the storm. Due to the X-band nature of the **Tail Doppler Radar (TDR),** reliable observations only extend outward ~50 km from the aircraft, limiting the azimuthal coverage of observations. An example of the coverage the TDR provides for a single pass is shown.

METplus will read these in via Python Embedding and give model developers the ability to use field project datasets for evaluations and process-oriented studies

Growing METplus Community

Research Institutions

- NCAR (RAL, MMM, CGD)
- Naval Research Lab
- SBU, U of Illinois Urbana-Champaign, U of Wisc Madison, OU, UND, NC State, Purdue, Albany, etc...
- Labs NOAA Research (GSL, NSSL, PSL, ARL, GFDL)
- NASA Coordinated Community Modeling Center (for Space Wx)
- Army Research Lab

Operational Centers adopted portions or all of METplus

- NOAA EMC, SPC, WPC, OPC, SWPC, NHC, CPC, MDL
- Air Force Operational Center
- The Met Office (agreement executed)
- Other UM partners (i.e. Australia BoM, S. African WS) also considering contributing
- Fleet Numerical is considering once Naval Research Lab has transitioned
- Central Weather Bureau (Taiwan) is considering adoption

	NCAR / container-dtc-metviewe	er	O Watch - 4 ★ Star 1 ¥ Fork 3		
	↔ Code ① Issues ② [*] Pull required.	uests 0 III Projects 0 III Wiki	1) Insights		
	Branch: master - container-dtc-metvie	wer / README.docker.txt	Find file Copy path	GitHub	
	TatianaBurek remove building MySQL fro	m the instructions, added alternative way to	8a398cd on Nov 10, 2017		
	2 contributors 🦮 🔐				
	50 lines (41 sloc) 2.06 KB		Raw Blame History 🖵 🖋 🍵		
tter (DTC) to be used with the Weather Research and Fondards used allow MET to be run on the output of other ecurrent MET capabilities include traditional verification fidence intervals for most verification measures; spatia thods; and tropical cyclone track verification methods." It can be run individually without running the entire set to this modular design.	Although MET was developed at the Developmental Testbed recasting (WRF) modeling system, the data formats and rmodeling systems as well, approaches for standard surface and upper air variables; I forecast verification methods; ensemble verification The MET package is designed to be modular and flexible. Each of tools. New tools can easily be added to the MET package of the NWP community - including operational centers and the	MODEL EVALUATION TOOLS (MET) Home nd METVI CONTENTS Introduction Flow Chart Data Formats Case Study Tutorial Setup + Grid Processing Tools + Point Processing Tool + Point Stat + Grid-Stat +	Model Evaluation Tools Version 8.0 (METv8.0) User's Guide Developmental Testbed Center Boulder, Colorado	METplus Helpdesk Activity 2010-2019	
The UNIX make (GNU make) utility The HDF5 library is required to support NetCDF4. Jridata's NetCDF4 library The GNU Scientific Library (GSL)		Ensemble-Stat + Wavelet-Stat + Stat-Analysis + Series-Analysis +	John Halley Gotway, Kathryn Newman, Tara Jensen, Barbara Brown, Randy Bullock, and Tressa Fowler with contributions from Julie Preotopnik, Eric Gilledand, Howard Soh, Minna Win-Gildenneister, George McCabe and James Frind	요	
	Developin YouTube-st		September 2018	$ \begin{array}{c} \stackrel{>}{\rightarrow} 100 \\ \stackrel{\otimes}{\rightarrow} 50 \\ \stackrel{\times}{=} 0 \end{array} $	18 20

JS	er Support			₩ METplus	Docs » User's Guide
CTC	Developmental ABOUT - TESTING + EVALUATION - COMMUNITY CODE - VISITOR PROGRA	M NEWS E	VENTS.	METplus	User's Guide
'	METPLUS			3.1 Search docs METPLUS WRAPPERS GUIDES User's Guide Contributor's Guide	Foreword: A note to METplus Wrappers users This User's Guide is provided as an aid to users of companion package METplus Wrappers. MET is a supported to community via the Developmental Te weather prediction community. METplus Wrappers and ancillary scripts to enhance the user's ability to
View	Edit	N		😤 MET	🖀 » User's Guide
Welcom develop United S	come ne to the users page for the enhanced Model Evaluation Tools (METplus) verification system. METplus bed by the Developmental Testbed Center (DTC) through the generous support of the 557th Weather States Air Force, the National Oceanic and Atmospheric Administration (NOAA), and the National Cent theric Research (NCAR).	Wing of the	METPLUS Home System Architecture Documentation Download Terms Of Use	Model Evaluation Tools 9.1	User's Guide Foreword: A note to MET users This User's guide is provided as an aid to users of t
	DOWNLOAD utline Revisions		METPLUS COMPONENTS V	Search docs MODEL EVALUATION TOOLS User's Guide	verification tools developed by the Developmental weather prediction community to help them assess weather predictions. It is also the core component METplus details can be found at: http://dtcenter.or It is important to note here that MET is an evolving
OMMENDE	D		METPLUS	Contributor's Guide	describes the 0.1 release dated 20200010. Drovies
SION	DOWNLOAD	DATE	Home	• Holpdogle ti	akata at mat halp@ugar
plus 3.1	METplus-3.1 User's Guide Release Notes Existing Builds and Docker Tutorial (v3.0) Release Notes	2020-08-11	System Architecture Documentation	_	ckets at <u>met_help@ucar.</u> with "back-and-forths" u
9.1	met-9.1.tar.gz User's Guide Release Notes Release Notes	2020-08-10	Download	even more	
viewer-3.1	METviewer-3.1 User's Guide Release Notes Release Notes	2020-08-10	Terms Of Use Gign Up For Updates		or transition to Forums

Next 2-5 Years of METplus Development

Coupled System Metrics:

- Metrics Workshop
- Sea-ice output evaluation
- PBL diagnostics
- MJO and teleconnection diagnostics
- Hurricane track diagnostics
- Ensemble evaluation
- DA
- Space

Process-oriented diagnostic:

- Cold surface temperature, SST, and PBL biases
- Gravity wave drag and stratospheric coupling
- Sources of cloud cover and precipitation biases
- ENSO and teleconnections

EMC priorities for DTC development:

- Sea Ice
- PBL and Aerosols/Air Quality
- Ensemble
- Non-Severe LAM
- S2S and coupled model evaluation (LSM, Marine and Cryo, Hydro, Stratosphere, Upper Atmos/Geo-space)

Other High Priority Projects:

- US Climate Prediction Center R2O for S2S
- Marine/Cryosphere coupled metrics for use by EMC and OPC
- Stratospheric Coupling, General Circulation Index diagnostics
- Space Weather R2O
- Cloud Verification / DA diagnostics / Ensemble diagnostics
- Generalization of File Format Support including verification on the native model domain

Thank You for Your Attention

- Tara Jensen, METplus PM, jensen@ucar.edu
- Marion Mittermaier, EGWLAM contact, <u>marion.mittermaier@metoffice.gov.uk</u>
- User's Page: <u>https://dtcenter.org/community-code/metplus</u>
- Find us on GitHub: <u>https://github.com/DTCenter</u>

METplus

