

"Treatment of new external parameters in COSMO urban modelling"

Paola Mercogliano (Fondazione CMCC) in collaboration with:

Valeria Garbero and Massimo Milelli (Arpa Piemonte),

E. Bucchignani (CIRA),

J.-P. Schulz and U. Schättler (DWD),

M. Varentsov (Roshydromet),

H. Wouters (Flemish Institute for Technological Research),

M. Demuzere (Ruhr-Universität Bochum),

Francesca Bassani (PoliTO)

Francesco Repola (Fondazione CMCC)

J.-M. Bettems (MeteoSwiss)

EWGLAM 2020

Motivations

- Bulk representation of the urban canopy
- Use of Anthropogenic heat emission (Flanner, 2009)
- Poor men's tile approach
- Application of the Semi-empirical Urban canopy parameterisation (SURY). It translates urban-canopy parameters (with 3D information) into bulk parameters
- Inclusion of the new bare-soil evaporation resistance formulation (Schulz and Vogel 2016) and the vegetation skin-temperature parameterisation (Schulz and Vogel 2017, Viterbo and Beljaars, 1995).

The simple bulk-model TERRA-URB parameterises the effects of buildings on the air flow without resolving the energy budgets of the buildings themselves, but using the externally calculated anthropogenic heat flux (Q_F). It accounts for country-specific data of energy consumption, based on the population density and the latitude dependent diurnal and seasonal distribution.

Wouters et al., Geosci. Model Dev., 9, 3027-3054, 2016

Add and investigate the use of hard-coded values for the urban canopy parameters

Motivation for the recent code developments

Urban canopy parameters used by SURY (Semiempirical URban canopY dependency) in TERRA_URB (Wouters et al., 2016)

Heat capacity

Thermal admittance

Aerodynamic roughness length Inverse Stanton number $C_{v,\text{bulk}}$

 $\mu_{\text{bulk}} (= \sqrt{C_{v,\text{bulk}} \lambda_{\text{bulk}}})$

Parameter name	Symbol	Default values			
Surface albedo	α ϵ	0.101	Tthermal and radiative		
Surface emissivity		0.86			
Surface heat conductivity	λ_s	$0.767\mathrm{Wm^{-1}K^{-1}}$	 parameters of urban material 		
Surface heat capacity	$C_{v,8}$ H $\frac{h}{w_c}$	$1.25 \times 10^6 \mathrm{Jm}^{-3} \mathrm{K}^{-1}$	Building morphology		
Building height		15 m			
Canyon height-to-width ratio		1.5			
Roof fraction	R	0.667	parameters		
	Bulk parameters	s (output of SURY)			
Parameter name	Symbol	Surface values corresponding to the defaults			
Albedo	α_{bulk}	0.081 (snow-free)			
Emissivity	€bulk	0.89 (snow-free)			
Heat conductivity	λ_{bulk}	$1.55\mathrm{Wm^{-1}K^{-1}}$			

 $2.50\times 10^6\,\mathrm{J\,m^{-3}\,K^{-1}}$

 $1.97 \times 10^3 \,\mathrm{J}\,\mathrm{m}^{-2}\,\mathrm{K}^{-1}\,\mathrm{s}^{-1/2}$

13.2 (in case that $u_* = 0.25 \,\mathrm{m \, s}^{-1}$)

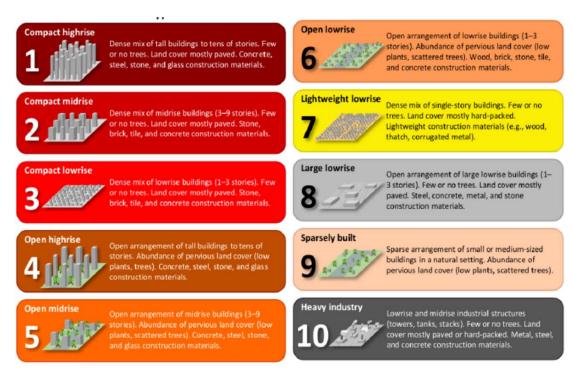
Cities and their parts are very different!

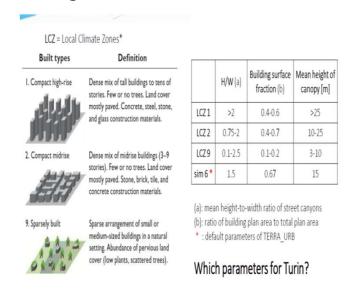
CZ 5 Open midrise

Main idea was to replace hard-coded constants to 2D external fields with a useful namelist controls

Add and investigate the use of hard-coded values for the urban canopy parameters

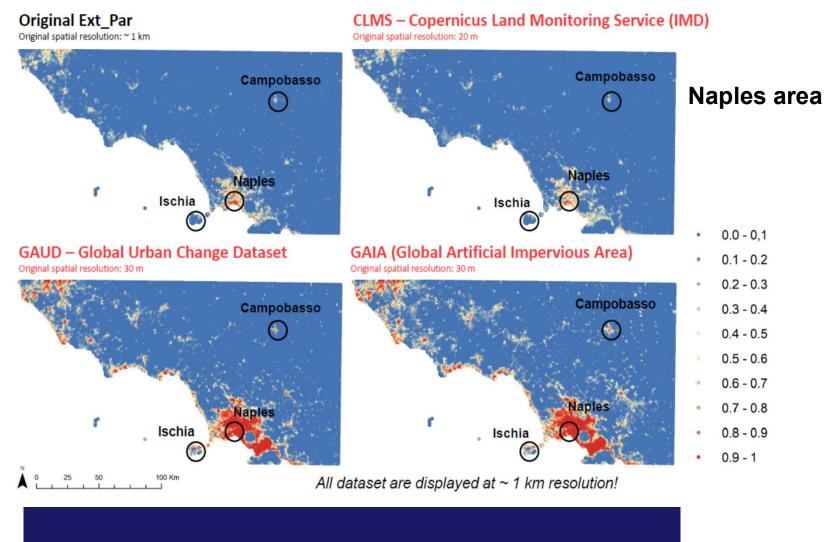
Implementation of new parameters

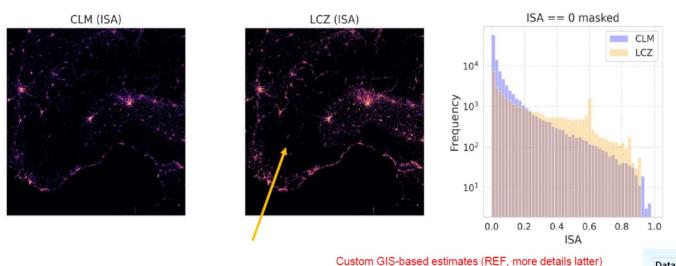

Description and units	Default value	Old variable in COSMO code	New variables in COSMO code	COSMO namelist parameters	INT2LM namelist parameters	External parameter name
Building area fraction with respect to an urban tile [1]	0.67	c_roof	curb_bldfr, curb_bldfr_d, curb_bldfr(:,:)	curb_bldfr	lurb_bldfr	URB_BLDFR
Building height [m]	15	c_uf_h	curb_bldh, curb_bldh_d, urb_bldh (:,:)	curb_bldh	lurb_bldh	URB_BLDH
Street canyon aspect ration (H/W) [unitless]	1.5	c_htw	curb_h2w, curb_h2w_d, urb_h2w(:,:)	curb_h2w	lurb_h2w	URB_H2W
Anthropogenic heat flux [W/m2]	-1 (to use external parameter)	ahf_an	curb_ahf, curb_ahf_d, ahf_an (:,:)	curb_ahf		AHF
Urban material thermal albedo [1]	0.14	ctalb_bm	curb_talb, urb_talb_d, urb_talb (:, :)	curb_talb		URB_TALB
Urban material shortwave albedo [1]	0.1	csalb_bm	curb_salb,curb_salb_d, urb_salb (:, :)	curb_salb		URB_SALB
Volumetric heat capacity of urban material (capacity * density) [J·m ⁻³ ·K ⁻¹]	1.25E6	c_rhoc_bm	curb_hcap, curb_hcap_d, urb_hcap (:, :)	curb_hcap		URB_HCAP
Heat conductivity of urban material [W·m ⁻¹ ·K ⁻¹]	0.777	c_ala_bm	curb_hcon, curb_hcon_d, urb_hcon (:, :)	curb_hcon		URB_HCON
Skin-layer conductivity for rural areas [???]	10 or 30 (now 30)	calamrur	cskinc, cskinc_d, skinc (:,:)	cskinc	Iskinc	SKC
Skin-layer conductivity for urban areas [???]	1000	calamurb	cskinc_urb	cskinc_urb		


New parameters able to take into account different urban morphology will be tested over 3 test cases of the project (Moscow, Turin and Naples)

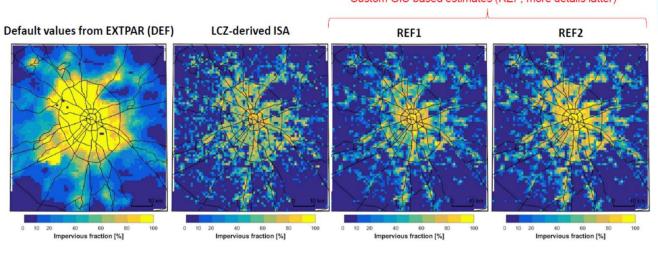
Test the use of the LCZ concept as a possible input for urban climate modelling.

Different simulations were implemented using Local Climate Zone (LCZ). LCZ are "regions of uniform surface cover, structure, material, and human activity that span hundreds of meters to several kilometres in horizontal scale" (Oke, 2012); each LCZ has a characteristic screen-height temperature regime that is most apparent over dry surfaces, on calm, clear nights.


10 Urban LCZ classes


For Each LCA is defined a specific set of urban parameters. A new Europeanwide dataset for LCZ has been released (Demuzere et al., 2019).

Improve the basic urban canopy parameters, the ISA fraction and AHF, also investigating additional urban dataset



Updating the current EXTPAR field of ISA with new products

Improve the basic urban canopy parameters, the ISA fraction and AHF, also investigating additional urban dataset

Turin area

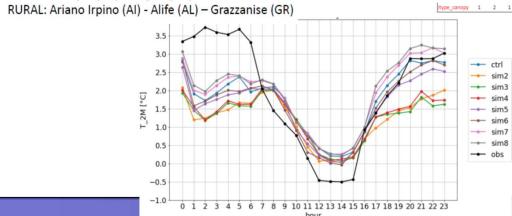
set/simulation name	Paved fraction			
DEF	Extpar defaults (Elvidge et al., 2007)			
LCZa	LCZ-derived			
LCZb	LCZ-delived			
REF1a		less paved fraction (vegetation that overlaps with		
REF1b	Expert estimate based on CGLC, Sentinel images and OSM	buildings and roads moves to vegetated tile)		
REF2a	(Samsonov, Varentsov, 2020)	more paved fraction (vegetation that overlaps with with buildings and roads moves to paved tile)		
REF2b				

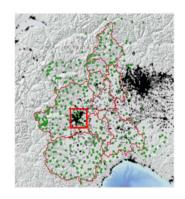
Moscow area

A better calibration of parameters is needed when TERRA_URB is switched on

The verification is an important aspect of the project to evaluate the performance of the model.

The experiments will be performed over the test cases already defined:


- urban areas of Turin (Italy) and Naples (Italy)
- the Moscow megacity (Russia).


For the validation have been uses the dense surface-layer observations available in the considered cities.

A large set of common simulations have been tested and are currently under evaluation

Selecting 5 stations:

• URBAN: Pompei (PO) - Napoli (NA)

The different model configurations have been evaluated by comparing the results with observations provided by the Arpa Piemonte network (few urban stations, many non-urban stations)

Next activities

COSMO Priority Project CITTA':

City Induced Temperature change Through A'dvanced modelling

Project leader: Jan-Peter Schulz (DWD)

Project duration: Jan. 2021 – Dec. 2023 (3 years)

Next activities

- Implementation of TERRA_URB in ICON Model
- Treatment of existing and new external parameters (updated datasets, global coverage if possible...)
- Numerical experiments (new tests on Bucharest and possibly one German city)
- Further developments of the TERRA_URB scheme
- AoB...

Thanks for your attention

For additional information please contact

paola.mercogliano@cmcc.it