Testing the theory of HARMONIE-AROME cloud thermal radiation parametrizations

Kristian Pagh Nielsen, EWGLAM 2020-10-01

Hypothesis:

To test the theoretical background for recent KNMI empirical results regarding cloud thermal radiation interaction.

Spectrally resolved atmospheric thermal (LW) radiation

Mie computations of LW cloud-radiation interactions

DMI

Spectral absorption efficiency (Q_a)

Mie computations of LW cloud-radiation interactions

DMI

Spectral mass absorption coefficients

Band averaged absorptance/emissivity

$$\overline{\text{Abs}}_{\text{band}}^{i} = 1 - e^{-(1 - \omega_{\text{band}})\psi_{\text{band}}\text{LWP}} \quad ($$

(Lindner & Li 2000)

 ω is the single scattering albedo ψ is the mass extinction coefficeent in m²/g LWP is the liquid water path in g/m²

Empirical absorptance/emissivity vs LWP

Figure 8: Emissivity/absorption as a function of cloud water path in Cabauw from 2012-2019 for all fog cases.

Spectral absorptance/emissivity for LWP = 1 g/m^2

Spectral absorptance/emissivity for LWP = 2 g/m²

Spectral absorptance/emissivity for LWP = 5 g/m^2

Spectral band Mie-Debye calculations

Spectral absorptance/emissivity for LWP = 10 g/m^2

Spectral band Mie-Debye calculations

Spectral absorptance/emissivity for LWP = 100 g/m^2

Spectral band Mie-Debye calculations

Conclusions:

- Theoretical analyses confirms that the current HARMONIE-AROME LW cloud emissivity is too high.
- The spectrally resolved LW cloud emissivity should be accounted for.

Contact details: kpn@dmi.dk

