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Climate models are slow, and we should care

* Trend towards higher resolution in weather/climate models

« High-resolution simulations are highly energy intensive: on the state-of-
the-art COSMO model run on efficient GPUs at 1 km resolution, 596 MWh

per simulated year!

= energy required to simulate 100 years could power 16000 UK
homes for a year

« Trend towards more heterogenous and parallel hardware which legacy
codes make poor use of (current NWP models realize a few % of peak

performance?)

Danish Meteorological Institute
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Atmospheric radiation: understood, but complex

« Radiative transfer is often one of the most expensive components
in large-scale models (50% of runtime in ECHAM3)

* This is despite using several tricks to simplify the well-understood
but complex physics in modern radiation schemes

* Treat radiation as 1D despite being 3D

« To get around spectral complexity (millions of absorption lines), use the
correlated-k method to reorder absorption coefficients in ascending order
-2 0(2-3) pseudo-monochromatic spectral point (g-points)



® UNIVERSITY OF COPENHAGEN 30/09/2021 4

<> e pmi

Machine learning to the rescue?

 Neural nets have been used to emulate entire radiation schemes
(Krasnopolsky et al. (2010), Pal et al., (2019)..)

* Large speed-ups (10-100x) but at the cost of accuracy and generalization
(20 W m~2error in surface flux in Pal et al.)
« Even small errors can accumulate

« Operational use would require high accuracy, stability and generalisation
(to e.g. warmer climates)

« Alternative to the tall task of emulating the entire radiation code?

Danish Meteorological Institute



® UNIVERSITY OF COPENHAGEN 30/09/2021 5

[ ]

, ®
<2 e DM
® Danish Meteorological Institute

The four components of a radiation scheme

Cloud optical
x properties F

w/

® Determines
spectral resolution

® RRTM-G uses 252
spectral intervals

® Determines how
sophisticated
interactions with
clouds will be

Solver

® Codes should be modular, allowing components to be changed independently
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The four components of a radiation scheme

O
-— Cloud optical .

Interpolated from
look-up-table

® Determines
spectral resolution

® RRTM-G uses 252
spectral intervals

® Determines how
sophisticated
interactions with
clouds will be

Physical equations for
radiative transfer
between layers

Solver

® Codes should be modular, allowing components to be changed independently
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Work in a nutshell

« Develop neural networks to replace the computation of optical properties
in @ new radiation scheme, RTE+RRTMGP

« RRTMGP (RRTM for General circulation model applications—Parallell)
IS successor to RRTMG, used widely in GCM and NWP

« RRTMGP computes optical properties of the atmosphere using
(256+224=480) g-points

« RTE (Radiative Transfer for Energetics) uses two-stream equations to
compute radiative transfer

« Combine this with refactoring/optimizing other parts of the code

Danish Meteorological Institute
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Why NNs are (hopefully) more efficient

Original code maps atmospheric For each layer j = 1...J in each column k = 1...K

conditions to optical properties using For band b = 1...B

LUT inte rpolation within lots of loo PS Compute the g-point vector 7, majy ;. by 3D linear interpolation in T, p
and n.

For each minor gas
Compute 7, by 2D linear interpolation in temperature and 7

Ti,j.g — Tmaj + Tmin
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Why NNs are (hopefully) more efficient g
Original code maps atmospheric For each layer 7 = 1....J in each column k£ = 1...K
conditions to optical properties using For band b = 1...B
LUT interpolation within lots of loo O Compute the g-point vector 7,maj, ; ;. by 3D linear interpolation in T, p
and n.

For each minor gas
Compute 7, by 2D linear interpolation in temperature and 7

Ta'.j._q = Tnm_j + Tmin

With NNs we can:

 Predict all g-points (224-256) and gas contributions (4-16) simultaneously
Yng= f( Xngas) Where Y and X are vectors and 7 is the NN mapping

ngas

* () Since optical property computations are independent for model levels and columns, we can
furthermore collapse nlev and ncol into one dimension kand do batch predictions for Y,g

* The core computations are then matrix-matrix multiplications which we can delegate to an
optimized library (BLAS)
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Developing NNs to replace a physics scheme:
lots of data needed!

« Obtain atmospheric profiles (T, p, q(H,0), q(0;), q(CO,),..) from many
sources
* Reanalyses
« climate projections
« Idealized profiles
« Sample present-day, preindustrial, future, LGM..

« Expand data synthetically: hypercube sampling of gas concentrations,
tweak temps and humidities etc.

® Danish Meteorological Institute
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Developing NNs to replace a physics scheme:
lots of data needed!

« Obtain atmospheric profiles (T, p, q(H,0), q(0;), q(CO,),..) from many
sources
* Reanalyses
« climate projections
« Idealized profiles
« Sample present-day, preindustrial, future, LGM..

« Expand data synthetically: hypercube sampling of gas concentrations,
tweak temps and humidities etc.

« Use RRTMGP to compute outputs (absorption coefficients, emission)

— 7 million training samples spanning a large range of
atmospheric conditions
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After lots of experimenting, good
results (R? >0.99) by using separate
neural nets to predict molecular
(=independent of layer thickness):

LW (=longwave, terrestrial)
absorption

« LW emission
« SW (=shortwave,solar) absorption
 SW scattering

Each NN outputs a vector of sizes
224 or 256, has 2 hidden layers and
18-64 neurons, and both inputs and
outputs were scaled

e.g. og(p), y/q(H,0)

+normalization

Accuracy

30/09/2021 12
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After lots of experimenting, good
results (R? >0.99) by using separate

neural nets to predict molecular _£

(=independent of layer thickness): * ¢

« LW (=longwave, terrestrial) =
absorption

* LW emission

« SW (=shortwave,solar) absorption &
&

« SW scattering <&

Each NN outputs a vector of sizes

224 or 256, has 2 hidden layers and

18-64 neurons, and both inputs and

outputs were scaled

N
2
&

e.g. log(p), v/q(H,0) &

+normalization
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REFERENCE NEURAL NET
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Implementation: neural networks in Fortran is simple e
and performance portable

* Neural nets were trained in Python, need to be used in Fortran

« Itook an existing OO Fortran implementation of dense neural networks
(neural-Fortran?), wrote new kernels using BLAS for batched inference
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Implementation: neural networks in Fortran is simple
and performance portable

#1fdef USE OPENACC

. . < use cublas
* GPUing the code is trivial Use openacc
#define sgemm cublassgemm
#endif
1) Call NVIDIAs cuBLAS instead of
BLAS ' 1. Multiply inputs with weights of first layer

I$acc host data use device(wt, x, a)
call sgemm('N','N', neurons, nbatch, nx, 1.0, wt, neurons, x, nx, 0.0, a, neurons)

$acc end host data

2) OpenACC directives above
loops

I 2. Add biases and activation

I$acc parallel loop gang vector collapse(2) default(present)
do j = 1, nbatch
do i = 1, neurons
a(i, ]:l = a{ir ] } + bl:l:l
call activation softsign(a(i, j))
end do
end do

I 3. Repeat steps 1-2 until final layer reached

do n =3, nlayers-1
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Code refactoring: switch around dimensions, pretty much

* The original RTE code uses columns as inner dimension, but RRTMGP has
columns as outer dimension

optical_depth(ng, nlev, ncol), radn_up(ncol, nlev, ng)

* In between expensive array transposes are needed. This motivated rewriting
RTE to columns-last



® UNIVERSITY OF COPENHAGEN 30/09/2021 18

Time to solution, clear-sky computations for 6400 columns

Reference f NN+Optimized

e LW gas optics B LW gas optics (NNs)

B W solver 9] B W solver (refactored)
SW gas optics | SW gas optics (NNs)

B SW solver | BN SW solver (refactored)

4 4
Number of CPU cores Number of CPU cores

CPU: AMD Ryzen 2600
Compiler: GCC 9.3, -0O3
BLAS library: BLIS

Only shortwave (SW)
computations include scattering
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Speed-up factor over REF (CPU)

REF, CPU REF, GPU OPT, GPU

CPU: Ryzen 2600, 6 cores
GPU: GTX 1070 (no tensor cores!)
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Speed-up factor over REF (CPU)

REF, CPU REF, GPU

CPU: Ryzen 2600, 6 cores
GPU: GTX 1070 (no tensor cores!)

OPT, GPU

The new gas optics has high
computational efficiency due
to BLAS

- 50 GFLOPS vs 5 GFLOPS
for original kernel!

The ECMWEF radiation
scheme is even worse: 1-2
GFLOPS (but improvements
are coming)
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Bonus slide — &

UNPUBLISHED RESULTS

NN Emulation of

entire radiation ¢
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Take-home message

« Climate and weather models make poor use out of modern
computer hardware

 NNs can be faster than traditional parameterizations, but focusing
on less exact, more empirical components may give good results
mor easily

« Refactoring existing codes could also go a long way

We combined the two to speed up a new radiation scheme by ~3x
on CPUs and GPUs, seemingly without losing accuracy

 RTE+RRTMGP-NN is designed to be a usable replacement of the
original code
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For any questions, feel free to

 Read our paper : Ukkonen, P., Pincus, R., Hogan, R. J., Pagh Nielsen,
K., & Kaas, E. (2020). Accelerating radiation computations for
dynamical models with targeted machine learning and code ESCAPE-2: Energy-efficient
optimization. Journal of Advances in Modeling Earth Systems, 12(12) SCalable Algorithms for

weather and climate Prediction

* Check out the code at https://github.com/peterukk/rte-rrtmgp-nn =i Fraseslle

* Email me (peterukk@gmail.com / puk@dmi.dk) European Union's Horizon 2020 research and
innovation programme. Grant Number:
800897

.
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