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Climate models are slow, and we should care

• Trend towards higher resolution in weather/climate models

• High-resolution simulations are highly energy intensive: on the state-of-
the-art COSMO model run on efficient GPUs at 1 km resolution, 596 MWh 
per simulated year1

→ energy required to simulate 100 years could power 16000 UK 
homes for a year 

• Trend towards more heterogenous and parallel hardware which legacy 
codes make poor use of (current NWP models realize a few % of peak 
performance2)
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Atmospheric radiation: understood, but complex

• Radiative transfer is often one of the most expensive components 
in large-scale models (50% of runtime in ECHAM3)

• This is despite using several tricks to simplify the well-understood 
but complex physics in modern radiation schemes

• Treat radiation as 1D despite being 3D

• To get around spectral complexity (millions of absorption lines), use the 
correlated-k method to reorder absorption coefficients in ascending order  

→ O(2-3) pseudo-monochromatic spectral point (g-points)
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Machine learning to the rescue?

• Neural nets have been used to emulate entire radiation schemes 
(Krasnopolsky et al. (2010), Pal et al., (2019)..) 

• Large speed-ups (10-100x) but at the cost of accuracy and generalization 
(20 W m−2 error in surface flux in Pal et al.)

• Even small errors can accumulate

• Operational use would require high accuracy, stability and generalisation 
(to e.g. warmer climates)

• Alternative to the tall task of emulating the entire radiation code?
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Interpolated from 
look-up-table

Physical equations for 
radiative transfer 
between layers



Work in a nutshell

• Develop neural networks to replace the computation of optical properties 
in a new radiation scheme, RTE+RRTMGP

• RRTMGP (RRTM for General circulation model applications—Parallell) 

is  successor to RRTMG, used widely in GCM and NWP

• RRTMGP computes optical properties of the atmosphere using 
(256+224=480) g-points

• RTE (Radiative Transfer for Energetics) uses two-stream equations to 
compute radiative transfer

• Combine this with refactoring/optimizing other parts of the code
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Why NNs are (hopefully) more efficient

Original code maps atmospheric 
conditions to optical properties using 
LUT interpolation within lots of loops
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With NNs we can:

• Predict all g-points (224-256) and gas contributions (4-16) simultaneously 
Yng= f( Xngas), where Y and X are vectors and f  is the NN mapping

• (!) Since optical property computations are independent for model levels and columns, we can 
furthermore collapse nlev and ncol into one dimension k and do batch predictions for Yng,k

• The core computations are then matrix-matrix multiplications which we can delegate to an 
optimized library (BLAS)



Developing NNs to replace a physics scheme: 
lots of data needed!

• Obtain atmospheric profiles (T, p, q(H2O), q(O3), q(CO2),..) from many 
sources

• Reanalyses 

• climate projections 

• Idealized profiles 

• Sample present-day, preindustrial, future, LGM.. 

• Expand data synthetically: hypercube sampling of gas concentrations, 
tweak temps and humidities etc. 
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Developing NNs to replace a physics scheme: 
lots of data needed!

• Obtain atmospheric profiles (T, p, q(H2O), q(O3), q(CO2),..) from many 
sources

• Reanalyses 

• climate projections 

• Idealized profiles 

• Sample present-day, preindustrial, future, LGM.. 

• Expand data synthetically: hypercube sampling of gas concentrations, 
tweak temps and humidities etc. 

• Use RRTMGP to compute outputs (absorption coefficients, emission)

→ 7 million training samples spanning a large range of 
atmospheric conditions
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Accuracy
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After lots of experimenting, good 
results (R2 >0.99) by using separate 
neural nets to predict molecular 
(=independent of layer thickness):

• LW (=longwave, terrestrial) 
absorption

• LW emission

• SW (=shortwave,solar) absorption

• SW scattering

Each NN outputs a vector of sizes 
224 or 256, has 2 hidden layers and 
18-64 neurons, and both inputs and 
outputs were scaled

e.g. log(p), 𝑞(𝐻20)

 +normalization
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Accuracy (LW)
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REFERENCE NEURAL NET



Implementation: neural networks in Fortran is simple 
and performance portable
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• Neural nets were trained in Python, need to be used in Fortran

• I took an existing OO Fortran implementation of dense neural networks 
(neural-Fortran4), wrote new kernels using BLAS for batched inference 



Implementation: neural networks in Fortran is simple 
and performance portable
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• GPUing the code is trivial

1) Call NVIDIAs cuBLAS instead of 
BLAS

2) OpenACC directives above 
loops



Code refactoring: switch around dimensions, pretty much 
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• The original RTE code uses columns as inner dimension, but RRTMGP has 
columns as outer dimension 

optical_depth(ng, nlev, ncol), radn_up(ncol, nlev, ng)

• In between expensive array transposes are needed. This motivated rewriting 
RTE to columns-last
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Time to solution, clear-sky computations for 6400 columns

CPU: AMD Ryzen 2600
Compiler: GCC 9.3, -O3
BLAS library: BLIS 

Only shortwave (SW) 
computations include scattering
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The new gas optics has high 
computational efficiency due 
to BLAS
- 50 GFLOPS vs 5 GFLOPS 

for original kernel!

The ECMWF radiation 
scheme is even worse: 1-2 
GFLOPS (but improvements 
are coming) 



Bonus slide –
UNPUBLISHED RESULTS
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NN Emulation of
entire radiation 
scheme

NN Emulation of one 
component in the solver 
(reflectance-transmittance)

NN Emulation of gas optics



• Climate and weather models make poor use out of modern 
computer hardware

• NNs can be faster than traditional parameterizations, but focusing 
on less exact, more empirical components may give good results 
mor easily

• Refactoring existing codes could also go a long way

• We combined the two to speed up a new radiation scheme by ~3x 
on CPUs and GPUs, seemingly without losing accuracy

• RTE+RRTMGP-NN is designed to be a usable replacement of the 
original code

Take-home message
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For any questions, feel free to

• Read our paper : Ukkonen, P., Pincus, R., Hogan, R. J., Pagh Nielsen, 
K., & Kaas, E. (2020). Accelerating radiation computations for 
dynamical models with targeted machine learning and code 
optimization. Journal of Advances in Modeling Earth Systems, 12(12)

• Check out the code at  https://github.com/peterukk/rte-rrtmgp-nn
• Email me (peterukk@gmail.com  / puk@dmi.dk)
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