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Context

From model error to the absence of a model

IData assimilation and model error
Numerical predictions in geophysics based on data assimilation crucially depends on
both initial condition and model error [Magnusson et al. 2013]. Mitigation of model error:

additive stochastic noise (e.g., [Trémolet 2006; Raanes et al. 2015; Sakov et al. 2018])
estimation of uncertain model parameters (e.g., [Bocquet 2012])
physically-driven stochastic perturbations (e.g., [Buizza et al. 1999]), stochastic subgrid
parameterizations (e.g, [Resseguier et al. 2017]), inflation (e.g., [Raanes et al. 2019])

IData-driven forecast of a physical system [resolvent-based]
One step further: renounce physically-based models and use massive observation

use data assimilation together with analogues [Lguensat et al. 2017]

use diffusion maps for a spectral representation of datasets [Harlim 2018]

use neural networks (NNs), echo states networks, & deep learning [Park et al. 1994; Pathak

et al. 2017; Dueben et al. 2018; Vlachas et al. 2020; Bonavita et al. 2020; Arcomano et al. 2020] to represent the resolvent.

I Learning the dynamics of a model from its output [tendencies-based]
more explicit (possibly with NNs) representations of the dynamics using specific
regressors e.g., [Paduart et al. 2010; Brunton et al. 2016].
design NNs that mimic integration schemes [Wang et al. 1998; Fablet et al. 2018; Long et al. 2018]
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Context

Objectives

IGoal: Estimate chaotic dynamics from partial and noisy observations
−→ Surrogate model

IUnfortunately, basic machine learning requires full, noiseless observations!

IBut data assimilation techniques naturally account for imperfect observation!

ISubgoal 1: Develop a Bayesian framework for this estimation problem.
Estimate and minimize the errors attached to the estimation.

IBut this surely is an under-determined, hardly scalable problem!

ISubgoal 2: What about hybridizing a physical model with a trainable model?

[Bocquet et al. 2019; Brajard et al. 2020; Bocquet et al. 2020a; Brajard et al. 2021; Farchi et al. 2021b; Wikner et al. 2021; Tomizawa et al. 2021].
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Context

Objectives

IHowever, data assimilation is sequential as we want to exploit the latest
observations. But learning a surrogate model is by essence an offline optimisation
problem!

ISubgoal 4: What about online (i.e., sequential) learning?

IWhich data assimilation approach can we use for this task?

ISubgoal 4a: What about online learning with variational methods?

ISubgoal 4b: What about online learning with ensemble methods?

[Bocquet et al. 2019; Brajard et al. 2020; Bocquet et al. 2020a; Brajard et al. 2021; Farchi et al. 2021b; Malartic et al. 2021].

IAt crossroads between:
Data Assimilation (DA), Machine Learning (ML) and Dynamical Systems (DS)
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Bayesian DA and ML unification

Traditional Bayesian approach to data assimilation

IBayesian justification of the weak-constraint 4D-Var
Application of Bayes’ rule over a time window [t0,tK ] with batches of observations yk
at each time step tk . Define x0:K = x0, . . . ,xK and y0:K = y0, . . . ,yK .
The most general conditional pdf of interest is p(x0:K |y0:K ) and reads:

p(x0:K |y0:K )∝ p(y0:K |x0:K )p(x0:K ).

Assuming that the observation errors are Gaussian and uncorrelated in time, with error
covariance matrices R0, . . . ,RK , so that:

p(y0:K |x0:K ) =

K∏
k=0

p(yk |xk )∝ exp
(
−

1
2

K∑
k=0
‖yk −Hk (xk )‖2

R−1
k

)
.

Next, we assume that the prior pdf p(x0:K ) is Markovian, i.e. the state xk conditional
on the previous state xk−1 does not depend on all other previous past states:

p(x0:K ) = p(x0)
K∏

k=1
p(xk |x0:k−1) = p(x0)

K∏
k=1

p(xk |xk−1).
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Bayesian DA and ML unification

Traditional Bayesian approach to data assimilation

IBayesian justification of the weak-constraint 4D-Var
Now, we assume Gaussian statistics for the model error which are uncorrelated in time,
with zero bias and error covariance matrices Q1, . . . ,QK so that:

p(x0:K )∝ p(x0)exp
(
−

1
2

K∑
k=1
‖xk −Mk (xk−1)‖2

Q−1
k

)
.

We can assemble the likelihood and prior pieces to obtain the cost function associated
to the conditional pdf p(x0:K |y0:K ):

J(x0:K ) = − ln p(x0:K |y0:K ) (1)

=− lnp(x0)+
1
2

K∑
k=0
‖yk −Hk (xk )‖2

R−1
k

+
1
2

K∑
k=1
‖xk −Mk (xk−1)‖2

Q−1
k

(2)

Unsurprisingly, this is the cost function of the weak-constraint 4D-Var. The associated
statistical assumptions explicitly assume that the model is flawed.
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Bayesian DA and ML unification

Towards learning complex model error

IBayesian justification of the weak-constraint 4D-Var
With this type of weak-constraint 4D, one believes that the model can be corrected
with some stochastic noise to be added to the state vector.

IMore general model error
Instead of considering a known model xk = Mk (xk−1), one could assume a parametric
form of the model xk = Mk (p,xk−1), that depends on unknow time-independent
parameters p.
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Bayesian DA and ML unification

Bayesian inference of state trajectory and model

IBayesian analysis with model parameters
We can piggyback on the previous Bayesian analysis, but now adding the model
parameter vector p:

p(x0:K ,p|y0:K )∝ p(y0:K |x0:K ,p)p(x0:K ,p)∝ p(y0:K |x0:K ,p)p(x0:K |p)p(p),

which requires to introduce a prior pdf p(p) on the parameters. In the language of
Bayesian statistics, this is called a hierarchical decomposition of the conditional pdf.
As a consequence, the cost function for the state and model parameters problem is

J(x0:K ,p) =− ln p(x0:K ,p|y0:K )

=− lnp(x0)+
1
2

K∑
k=0
‖yk −Hk (xk )‖2

R−1
k

+
1
2

K∑
k=1
‖xk −Mk (p,xk−1)‖2

Q−1
k

− lnp(p).

This cost function is again similar to the weak-constraint 4D-var, but (i) p is now part
of the control variables, and (ii) there is a background term on p that may or may not
play a role depending on the importance of the data set.

[Hsieh et al. 1998; Abarbanel et al. 2018; Bocquet et al. 2019]
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Bayesian DA and ML unification

Connecting data assimilation and machine learning

IDiscussion
We note that, to be effective, a data assimilation analysis based on this cost
function would require not only the gradient of the cost function with respect to
the whole state trajectory, i.e. ∇x0:K J, but also the gradient of the cost function
with respect to the model parameters, i.e. ∇pJ.
−→ Need for the adjoint with respect to the model parameters!

IMachine learning limit
This (Bayesian) data assimilation standpoint on the problem of estimating the
model (together with the state trajectory) is remarkable as it allows for noisy and
partial observations on the physical system, as in traditional data assimilation.
Classical and simple machine learning approach of the problem would rather use
a dataset which is a complete observation of the physical system with minimal
noise, using a simple least-square loss function.
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Bayesian DA and ML unification

Connecting data assimilation and machine learning

IMachine learning limit
Let us assume that the physical system is fully and directly observed, i.e. Hk ≡ I,
and that the observation errors tend to zero, i.e. Rk → 0. Then the observation
term in the cost function is completely frozen and imposes that xk ' yk , so that,
in this limit, J(x0:K ,p) becomes

J(p) = 1
2

K∑
k=0
‖yk −Mk (p,yk−1)‖2

Q−1
k

− lnp(p).

This coincides with the tyical machine learning loss function with Qk ≡ I.

[Bocquet et al. 2019; Bocquet et al. 2020a]
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Bayesian DA and ML unification

Data assimilation and machine learning unification: Summary

IBayesian view on state and model estimation:

p(p,Q1:K ,x0:K |y0:K ,R0:K ) =
p(y0:K |x0:K ,p,Q1:K ,R0:K )p(x0:K |p,Q1:K )p(p,Q1:K )

p(y0:K ,R0:K )
.

IData assimilation cost function assuming Gaussian errors and Markovian dynamics:

J(p,x0:K ,Q1:K ) =
1
2

K∑
k=0

{
‖yk −Hk (xk )‖2

R−1
k

+ ln |Rk |
}

+
1
2

K∑
k=1

{
‖xk −Mk (p,xk−1)‖2

Q−1
k

+ ln |Qk |
}

− lnp(x0,p,Q1:K ).

−→ Allows to rigorously handle partial and noisy observations.

ITypical machine learning cost function with Hk ≡ Ik in the limit Rk −→ 0:

J(p)≈ 1
2

K∑
k=1
‖yk −Mk (p,yk−1)‖2

Q−1
k

− lnp(y0,p).
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Bayesian DA and ML unification

Bayesian analysis of the joint problem: Assuming Q1:K is known

I If the Q1:K are known, we look for minima of

J(p,x0:K |Q1:K ) = − lnp(p,x0:K |y0:K ,R0:K ,Q1:K ).

INumerical solution through optimization

(1) J(p,x0:K |Q1:K ) can be optimized using a full variational approach:

I In [Bocquet et al. 2019], J(p,x0:K |Q1:K ) is minimized using a full weak-constraint 4D-Var
where both x0:K and p are control variables.
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Bayesian DA and ML unification

Bayesian analysis of the joint problem: Assuming Q1:K is known

(2) J(p,x0:K |Q1:K ) is minimized using a coordinate descent:

I using a weak constraint 4D-Var for x0:K and a variational subproblem for p
[Bocquet et al. 2019].

I using a (higher-dimensional) strong constraint 4D-Var for x0:K and a variational
subproblem for p [Bocquet et al. 2019].

I using an EnKF/EnKS for x0:K and a variational subproblem for p [Brajard et al. 2020;

Bocquet et al. 2020a].

−→ Combine data assimilation and machine learning techniques in a coordinate descent

(p?,x?
0:K)

y0:K

Initialisation

choose p0

DA step (EnKS)

estimate xa
0:K

ML step (NN)

update p

p0 xa
0:K

p
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Low-order examples

Experiment plan

IThe reference model, the surrogate model and the forecasting system
δtr

δta

δtf

∆t

t0 tK

t0 tK

T + TfT

y0 yK

generating physical states

training step

forecast step

yk yk+1

IMetrics of comparison:
Model: ODE coefficients norm ‖pa −pr‖∞.
Forecast skill [FS]: Normalized RMSE (NRMSE) between the reference and the
surrogate forecasts as a function of the lead time (averaged over many initial
conditions).
Lyapunov spectrum [LS].
Power spectrum density [PSD].
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Low-order examples

Identifiable model and perfect observations

I Inferring the dynamics from dense & noiseless observations of identifiable models
The Lorenz 63 model (L63, 3 variables):

dx0
dt = σ(x1 −x0),

dx1
dt = ρx0 −x1 −x0x2,

dx2
dt = ρx0x1 −βx2,

−→ ‖pa −pr‖∞ ∼ 10−13 close to perfect reconstruction at machine precision.
The Lorenz 96 model (L96, 40 variables)

dxn
dt = (xn+1 −xn−2)xn−1 −xn +F ,

−→ ‖pa −pr‖∞ ∼ 10−13 close to perfect reconstruction at machine precision.
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Low-order examples

Almost identifiable model and perfect observations

I Inferring the dynamics from dense & noiseless observations of a non-identifiable model
The Lorenz 96 model (40 variables). Surrogate model based on an RK2 scheme.
Analysis of the modeling depth as a function of Nc.
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Low-order examples

Un-identifiable model and perfect observations

I Inferring the dynamics from dense & noiseless observations of a non-identifiable model
The Kuramoto-Sivashinski (KS) model (continuous, 128 variables).

∂u
∂t =−u ∂u

∂x −
∂2u
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Low-order examples

Un-identifiable model and perfect observations

I Inferring the dynamics from dense & noiseless observations of a non-identifiable model
The Kuramoto-Sivashinski (KS) model (continuous, 128 variables).
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Low-order examples

Almost identifiable model and imperfect observations

IVery good reconstruction of the long-term properties of the model (L96 model).

I Approximate scheme
I Fully observed
I Significantly noisy observations R = I
I Long window K = 5000, ∆t = 0.05
I EnKS with L = 4
I 30 EM iterations
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Low-order examples

Non-identifiable model and imperfect observations

IThe Lorenz 05III (two-scale) model (36 slow & 360 fast variables).

dxn
dt =ψ+

n (x)+F −h c
b

9∑
m=0

um+10n,

dum
dt =

c
bψ

−
m(bu)+h c

b xm/10, with ψ±
n (x) = xn∓1(xn±1 −xn∓2)−xn,
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Low-order examples

Non-identifiable model and imperfect observations

IGood reconstruction of the long-term properties of the model (L05III model).

I Approximate scheme
I Observation of the coarse modes only
I Significantly noisy observations R = I
I Long window K = 5000, ∆t = 0.05
I EnKS with L = 4
I 30 EM iterations
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More realistic setup

Machine learning for model error correction

IWe want to use this method to correct the error of a physical model Φk .

I In the cost function, we replace Mk(p,xk) with the hybrid model:

Mk(p,xk−1)−→Φk(xk−1)+Mk(p,xk−1).

I If the true trajectory xt
k is known (dense, noiseless observations), then the NN

would be trained with
xt

k 7→ xt
k+1 −Φk+1(xt

k).

IWith sparse and noisy observations, we need to use:
I the analysis xa

k in place of xt
k ;

I the analysis increment xa
k+1 −Φk+1(xa

k ) in place of xt
k+1 −Φk+1(xt

k ).

IThis corresponds to the first iteration of the coordinate descent!

[Brajard et al. 2021; Farchi et al. 2021b]
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More realistic setup

Application to the OOPS QG model

I The method is to be validated using the QG model implemented in OOPS.
I Model error is introduced as perturbed parameters, layer depths and orography,

and doubled integration time step.
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More realistic setup

The NN training

I A long cycled 4D-Var experiment is performed with the perturbed QG model.
I Its analysis increments are used to train small NNs.
I Depending on the sampling frequency of the ML step, the NNs are able to explain

80 % to 90 % of the analysis increments variance, but only 30 % to 85 % of the
model error variance.
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More realistic setup

Corrected data assimilation

IOne-iteration approximation of the coordinate descent:

Initialisation
choose p0

DA step (4D-Var)
estimate

δak = xa
k − Φk(xa

k−1) −Mk(p,xa
k−1)

ML step (NN)
update p

(p?,xa
0:K)

y0:K

p0 xa
0, δ

a
1:K

IWe want to evaluate the potential improvements from the correction in a subsequent
4D-Var experiment.

Initialisation
choose p0

DA step (4D-Var)
estimate

δak = xa
k − Φk(xa

k−1) −Mk(p,xa
k−1)

ML step (NN)
update p

DA step (4D-Var)
estimate

x?
k

(p?,x?
0:K)

y0:K y0:K

p0 xa
0, δ

a
1:K p?

IWe assume a linear error growth in time in the second DA step.

IThe model error prediction for a δt = 20min forecast (one integration time step) is
1/72 of the model error prediction for a 1 day forecast (one DA window).

IThe correction yield a 25% reduction in the analysis RMSE.

[Farchi et al. 2021b]
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Towards online learning?

Online model error correction

I So far, the model error has been learned offline: the ML (or training) step first
requires a long analysis trajectory.

I We now investigate the possibility to make online learning, i.e. improving the
correction as new observations become available.

I To do this, we use the formalism of DA to estimate both the state and the NN
parameters (SC-4D-Var + param. est. ∼ WC-4D-Var):

J(p,x) = 1
2
∥∥x−xb∥∥2

B−1
x

+
1
2
∥∥p−pb∥∥2

B−1
p

+
1
2

L∑
k=0

∥∥yk −Hk ◦Mk:0(p,x)
∥∥2

R−1
k

I Information is flowing from one window to the next using the prior for the state xb

and for the NN parameters pb.

I This is very similar to classical parameter estimation in DA!
I This has been already investigated in an EnKF+ML context [Bocquet et al. 2020a; Malartic et al.

2021], but with scalablity constraints on the ensemble size.
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Towards online learning?

Online or offline model error correction: numerical comparison

I Again with the 2-scale Lorenz model (L05-III).
I We use the tendency correction approach; it does not require the assumption of

linear growth of errors.

I We start the experiment by using the (non-corrected) physical model Φk .
I At some point, we switch on the online correction.
I Starting from a large value, we progressively decrease the parameter background

error covariance matrix Bp as the model improves.

[Farchi et al. 2021a]
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Towards online learning?

Online or offline model error correction: numerical comparison
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I The online correction steadily improves the model.
I At some point, the online correction gets more accurate than the offline correction.
I Eventually, the improvement saturates. The analysis error is similar to that

obtained with the true model!
[Farchi et al. 2021a]
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Conclusions

Conclusions

IMain messages:
Unification of data assimilation and machine learning within a Bayesian framework
(familiar to the DA community)
Surrogate models/model error can theoretically be learned with partial & noisy
observations.
Tested with L63, L96, L05-III, KS, 2-layer OOPS QG model.
Hybrid models with a known physical part should be considered for realistic
high-dimensional systems, with or without a known adjoint, learning tendencies or
resolvents.
Online estimation of the state and surrogate model/model error has a lot of
potential. Next generation (WC-)4D-Var?

All results presented here are from [Bocquet et al. 2019; Brajard et al. 2020; Bocquet et al. 2020a; Brajard et al. 2021; Farchi

et al. 2021b; Bocquet et al. 2020b; Farchi et al. 2021a; Malartic et al. 2021].
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