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The strength of a common goal




-
ECMWEF Strategy: Science and technology goals for 2030

\ seamless Ensemble Earth system
maximising the use of current and upcoming observations
through consistent and accurate modelling
with realistic water, energy and carbon cycles.

Jse of advanced high-performance computing
big data and Al methodologies
to create a Digital Twin of the Earth
with a breakthrough in realism.
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Machine Learning has been part of ECMWF forecasts for many years
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And now planning to revolutionize the full NWP workflow...
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Ready for the challenge

ECMWEF STRATEGY 2021-2030

The strength of a comman goal




MWF’s machine learning roadmap
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Raoult, Nils Wedi, Vasileios Baousis

< ECMWF

European Centre for Medium-Range
‘Weather Forecasts

JupyterHub and
machine learning
libraries available

loT data used
in operations

Machine learning
network established
and roadmap updated

First machine
learning training course

One machine
learning conference
per year

Machine learning team
established at ECMWF

Sufficient hardware
for machine learning
established

4 machine learning
benchmark datasets
published
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Copernicus
ITTs involve
machine learning

5 machine learning
applications integrated
in operational workflow

2023 2024

Comprehensive and
well-documented machine
learning workflow in place
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We might not see Al
incharge of our
weather forecasts

any day soon, but Al
can undoubtedly
improve weather and
climate predictions.

2 use cases of machine
learning accelerators for
conventional modelling

20251 2026

Machine learning
considered in
HPC procurement



upporting Roadmap |
entre of Excellence (COE) in Weather & Climate Modelling

CECMWF At©S nv%A
N 7

* develop new techniques to support next-generation weather
forecasting

* help boost climate and weather discovery and innovation
« prepare ECMWEF for future HPC and data handling architectures.




pporting Roadmap II: Infrastructure
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The European Weather Cloud aims to become the cloud-based collaboration platform
for meteorological application development & operations in Europe and

contributes to the digital transformation of the European Meteorological Infrastructure

"a communitv cloud”
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pporting Roadmap llla: H2020 SroN®
e MAELSTROM project

MAELSTROM Partner Country
ECMWF Member and Cooperating States in Europe

Weather & climate | ML WORKFLOW
BN APPLICATIONS & SOFTWARE

& ML SOLUTIONS benchmarking
development
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pporting Roadmap llib: H2020 & Partnerships
wards pre-operational machine learning tropical cyclone detection
« ECMWEF, NOAA and NVIDIA collaboration @

Cyclone tracks

“ ” Proudly announcing that our H2020 project p
from “IB-tracks

CLINT (CLImate INTelligence) has been funde:
will work with a unique group of scientists on |
climate science and services using #Machine
in a number of climate hotspots

Horizon 2020 % _ =
Programme OEEsSSS—==

- —
80, 176, 256 ggm )
160, 352, 128 160, 352, 128 —~
640, 1408, 32 640, 1408, 32 Cyclone centers

= ECMWF



pporting Roadmap 1V: Innovation Programme

ropean Summer of Weather Code %

THE FINAL ESOWC DAY
W ESOWC PROJECT TEAMS WILL PRESENT THE RESULTS OF THEIR PROJECTS
(Machine Learning for Pollution Monitoring) . THE VIRTUAL EVENT WILL BE LIVE-STREAMED

(&) MaLePoM - ESowe 2ep1l U LI
Machine Learning for Pollution Monitoring

SEPTEMBER _

>
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fridge.jl: Compressing atmospheric data into its real information content

= . CliMetLab - ESoWC 2021
@ i'll_lg.rl:.

.,-r-g_tgfridge:.jll-; ESowp '2021 7

ML specific Simplified data
plotting access

Drivers
ESoWC 2021




pporting Roadmap V: YOU

Machine learning for numerical weather
predictions and climate services - A workshop
for Member and Co-operating States

Rl

| 14-16 April 2021

Workshop overview

This virtual workshop aimed to update ECMWF's Member an
nd to allow for

realisation of ECMWF's machine learning roadmap. The workshop allowed for active

d Co-operating States about

active involvement in the

current machine learning efforts at ECN

Airrirrinmes and simmnd ta sallact fnndinarl fenmm tha Mambhar and FA Anacatine Coatar Tha

Member State workshops organized by Peter Dueben
(all questions to him!)

= ECMWF

Application for Member State short-term
secondment to ECMWEF

ECMWEF invites short-term secondments from Member State and Co-operating State hydro-
meteorological institutes.

Projects can cover all areas of work, typically science, forecast delivery, computing,
environmental applications, administration and communication. Any secondment proposal
must be agreed with your line management.

ECMWTF can offer partial funding to support such stays. The work arrangements can be any
period from several weeks up to a maximum of three months, either as a continuous stay or
a sequence of shorter stays.

The seniority of the candidate can be at any level, from trainee to experienced staff.

Check website under Jobs



itus of machine learning at ECMWF
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emulate the 3D cloud effect in radiation

epresent 3D cloud effects for radiation (SPARTACUS) within simulations of the Integrated Forecast Model
‘time slower than the standard radiation scheme (Tripleclouds)

1 we emulate the difference between Tripleclouds and SPARTACUS using neural networks?

30 S|gna| change to longwave heatmg rate (troposphere) [o] 3D prediction: change to longwave heating rate (troposphere)

L] - | L “l
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Latitude Latitude

_ Tripleclouds | SPARTACUS | Neural Network | Tripleclouds+Neural Network
1.0 0.003 1.003



Machine learning applied to forecast 2m temperature and 10m wind
Fenwick Cooper, Zied Ben Bouallegue, Matthew Chantry, Peter Dlben, Peter Bechtold, Irina Sandu

Verifying on DJF (dataset 1)

0 10 20 30 40 50

Forecast lead time (hours)

—eo— Default bias correction

-~ Linear regression (815 params.)
—eo— Random forest (max depth=50)
—e— Neural network (2657 params.)

Example: 2m temperature, Winter 2020, 1 year of training data

Root-Mean-Squared Error (RMSE) with respect to station measuremen
All stations (left) — Individual stations change (below)

5%
oy ECMWF EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS 16



The strength of a common goal




Machine learning for weather predictions

Peter Dueben

Royal Society University Research Fellow & ECMWF’s Coordinator for Machine Learning and Al Activities
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Let’s start with definitions

Artificial intelligence (Al) is intelligence demonstrated by machines, i
contrast to the natural intelligence displayed by humans (Wikipedia)
Example: A self-driving car stops as it detects a cyclist crossing

Artificial intelligence

Machine learning (ML) is the scientific study of algorithms and statisti
models that computer systems use to perform a specific task without u
explicit instructions... (Wikipedia)

‘ Example: To learn to distinguish between a cyclist and other things fror

learning Deep learning is part of a broader family of machine learning methods
based on artificial neural networks (Wikipedia)
Example: The technique that is used to detect a cyclist in a picture

Machine learning




eep learning and artificial neural networks as one example of machi
learning

The concept:
Take input and output samples from a large data set
Learn to predict outputs from inputs Hidden layers

Predict the output for unseen inputs
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The key:

Neural networks can learn a complex task as a “black box”
No previous knowledge about the system is required

More data will allow for better networks

The number of applications is increasing by day:

Image recognition T W ‘,_
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And weather?



Decision trees and random forrests

Decisions fork in tree structures
Intil a prediction is made.

Random forest” methods are
raining a multitude of decision
rees using a mean predictions
r the value with the most hits as
1 result.

Jecision trees are often fast and
iccurate and they are able to
onserve some of the properties
f the system.

Jecision trees often require a lot
f memory (as they serve as an
fficient look-up table).

An example for ecPoint:

Level 1

Level 2

Level 3

Level 4

Level 5

ALL CASES , continuation of dec
' tree (detail not sho
CF>0.75
<2 2<TP <8 (mm) >8 | | >16
<16 | | <32
5 < Vg0 < 20 (m/s)
50 < CAPE < 500 (J/kg)
70<S,, <275 (W/m?)
«— Mapping Functions

Hewson and Pillosu 2020



Two families of machine learning

Classical Machine [Learning

wew Dg
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Supervised [earning {Jnsupervised [ earhing
( Unlabelled Data )

( Pre Categorized Data )
1 Dimensionality

Classification Regression Clustering Association i)
{ Divide the { Divide the { Divide by { Jdentigy Re
cocks by Color ) Ties by Length | Cimilarity | Sequences | { Tficler
== Dependencies |
ES. Identity E8. Market Eg. Targeted Eg. Customer _
Fraud Detection Farecasting Marketing Recommendation Eg. Big Data
Visualization
Pattern/ Structure Recognition D
R

(Obj: Predications 4 Predictive Models

Source: https://medium.com/@recrosoft.io/supervised-vs-unsupervised-learning-key-differences-cdd46206cdcb



Why would machine learning help in weather and climate
ictions of weather and climate are difficulprediCtionS?

1e Earth is huge, resolution is limited and we cannot represent
important processes within model simulations

1e Earth System shows “chaotic” dynamics which makes it
ficult to predict the future based on equations

| Earth System components (atmosphere, ocean, land surface,
oud physics,...) are connected in a non-trivial way

ome of the processes involved are not well understood
ever, we have a huge number of observations and Earth
em data

1ere are many application areas for machine learning in
imerical weather predictions

ﬁp&_ﬁ_@'_ﬁ’;:-m
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Iy IS machine learning so hip at the moment?

ncrease in data volume

New computing hardware

New machine learning software

ncrease in knowledge Bauer et al. ECMWF SAC paper 2019
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hat will machine learning for numerical weather and climate predictic

look like in 10 years from now?

2 uncertainty range is still very large...



N we replace conventional weather forecast systems by deep learni

» could base the entire model on neural networks and trash the conventional models.?
ere are limitations for existing models and ECMWEF provides access to hundreds of petabytes of

simple test configuration:

We retrieve historical data (ERAS) for geopotential at 500 hPa (Z500) for the last decades
(>65,000 global data sets)

We map the global data to a coarse two-dimensional grid (60x31)

We learn to predict the update of the field from one hour to the next using deep learning
Once we have learned the update, we can perform predictions into the future

 physical understanding is required! 0000000
000060000

N N NN N N |
00000
. . . . . . . Dueben and Bauer GMI



nwe replace conventlonal weather forecast systems by deep Iearnn

mem.hmany 201000 m'cmr DVTm 01 Janu aqanmmmcsmnpa G&opolenlal

Fldayﬂl Jammyzmuoourcmn uVI‘:Fnu;m Januy uyamamurc smnPa Geo‘menlal

> evolution of Z500 for historic data and a neural network prediction.
you tell which one is the neural network?

he neural network is picking up the dynamics nicely.
orecast errors are comparable if we compare like with like.
here is a lot of progress at the moment.

cher and Messori GMD 2019; Weyn, Durran, and Caruana JAMES 2019; Rasp and Thuerey 2020...

5 this the future for medium-range weather predictions?

kely...
he simulations change dynamics in long integrations and it is unclear how
) fix conservation properties.

_is unknown how to increase complexity and how to fix feature interactions.

here are only ~40 years of data available.

L1 forecast error
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~Coarse resolution model
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Dueben and Bauer GMI




Can we replace conventional Earth System models by deep learning

yur MetNET precipitation predictions by Google:
ywal, Barrington, Bromberg, Burge, Gazen, Hickey arXiv:1912.12132

NOAA forecast Ground truth Machine learning:

HRRR 01/24/2018, 15:00:00 MRMS 01/24/2018, 15:58:00

Al for Weather 01/24/2018, 15:58:00

-

Bellevue

p learning for multi-year ENSO forecasts: Ham, Kim, Luo Nature 2019

—e— CNN —+—CanCM3 —e— CCSM3 —e— GFDL-aer04 —e— GFDL-FLOR-BO1
—e— SINTEX-F ——CanCM4 —»—CCSM4 —o— GFDL-FLOR-A06

09

0.8 -

0.7

0.6 -

Correlation skill

0.5

0.4

0.3

| | | | | | | | | | |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 2
Forecast lead (months)

1 |
1 22 23

climate?



itus of machine learning at ECMWF
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)W bad is it to use machine learning in a changing climate?lopments

Testing Trajectories, D2R2, Extrapolation HESEFION

; — O—(y —_ .CU) Inpu}layer | T'n
Y

P x(p—2) =y

; = xy — Bz

Predicted
- True

et’s train a machine learning tool in a changing climate

et’s start simple to be able to make clear statements - The Lorenz’63 model
et’s take two different approaches to learn the model from a truth trajectory: ::‘:'ﬂed \\
. Echo State Networks (Vlachas et al. 2020 and Chattopadhyay et al. 2020) <

. Domain-Driven Regularized Regression (D2R2; Pyle et al. 2021)

et’s assume that today’s climate is the “left-lobe regime” and that climate change is kicking us into the
two-lobe regime”.

Vhat if we only train from 1%, 2%, 5%... of the training data from the right lobe?

Pyle, Chantry, Palem, Palmer, Dueben, P



ience and tool developments

Avg Testing Error (Regularized LSR) Avg Testing Error (D2R2)

—— 0% Right
.1% Right
—— 1% Right
154 —— 10% Right
—— 100% Right

20 A

: \
i 10 4
W
0% Right
1% Right
—— 1% Right 1
—— 10% Right
—— 100% Right N
0 250 500 750 1000 1250 1500 1750 2000 0 250 500 750 1000 1250 1500 1750 2000
Testing Step Testing Step
Echo State Network Regression Technique (D2R2)

The Echo State Network performs horrible unless you provide at least 10% of the data of the right lobe.
The regression technique needs a very small amount of the right lobe to perform well.

wysics informed machine learning, explainable Al and trustworthy Al need to be explored.

Pyle, Chantry, Palem, Palmer, Dueben, P



)W can you build trust in machine learning tools and make them
lable?

stworthy Al, explainable Al and physics informed machine learning

re are several ways to incorporate physical knowledge into machine learning tools:

~ormulate the machine learning problem in a way that makes it physical (e.g. heating rate/fluxes for radi
Change the architecture of the neural network

Close the budget for the output variables or correct the outputs to fulfil the constraint

ncorporate physical constraints into the loss function that is used for training

re are also ways to evaluate whether the machine learning solution is reproducing the right phy
Consider specific use cases and weather regimes

Perform sensitivity tests on the inputs or outputs

Test for physical reasoning (e.g. for extreme events)

hstein, M. et al. Deep learning and process understanding for data-driven Earth system science. Nature 566, 195-204

overn, et al. Making the Black Box More Transparent: Understanding the Physical Implications of Machine Learning, Bt
e American Meteorological Society, 100(11), 2175-2199 (2019)



N we represent scale interactions with machine learning tools?

ather and climate modelling:
Is need to allow for scale interactions

ul‘-
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Machine learning:
Neural network tools allow for encoding/decoding stru
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Source: https://towardsdatascience.com

) we use encoder/decoder networks to represent scale interactions?



recipitation down-scaling

oblem: Learn to map weather predictions from ERAS reanalysis data at ~50 km resolution to E-OBS
al precipitation observations at ~10 km resolution over the UK.

e case: Eventually, apply the tool to climate predictions to understand changes of local precipitation
ttern due to climate change.

xthod: Use Tru-NET with a mixture of ConvGru layers to represent spatial-temporal scale interactions
d a novel Fused Temporal Cross Attention mechanism to improve time dependencies.

i Y, YorYog L T2 To7 T8

SN = =S \\\—-\\\(28)

Output Layer: rain level Output Layer: rain prob.

A

Dual State 'ConvGRU

- —— - Conventional forecast model 3.627

‘Conv GRU w/ FTCA. = Hierarchical Convolutional GRU 3.266

g\ == = =R = = = Tru-Net 3.081

| ConvGRU w/ FTCA Encodar

--S5SESY  (12)
ip connection | =) EEEEEEE .

~oncatenate @ ‘ ConvGRU

quence length | (n) ENEEEEEN (112)

X X X Ay X106 X108 X110 X112

o = mm o mm

Adewoyin, Dueben, Watson, He, Dutta http://arxiv.org/abs/20C



)W to use machine learning?

It is often better to not replace the full system but rather to learn the “delta” of the most expensive ol

uncertain dynamics: No “all-in” but hybrid; no signal but delta
Watson, P. A. G.: Applying machine learning to improve simulations of a chaotic dynamical system using
empirical error correction. Journal of Advances in Modeling Earth Systems, 11, 1402— 1417, 2019

It is often a good idea to learn the error since it is not “physical” and often measurable
Bonavita, M., & Laloyaux, P.: Machine learning for model error inference and correction. Journal of Advanc
Modeling Earth Systems, 12, e2020MS002232, 2020

If you can learn the error, you can also learn the uncertainty representation

For example via dropout techniques, variational autoencoders or generative adversarial networks
Leinonen, J., Guillaume, A., & Yuan, T.: Reconstruction of cloud vertical structure with a generative advers
network. Geophysical Research Letters, 46, 7035— 7044, 2019

See Hannah'’s talk

Tripleclouds | SPARTACUS | Neural Tripleclouds
Network |+ Neural Network
. 0.003 1.003

r, Hogan, Dueben, Mason https://arxiv.org/abs/2103.11919




’C efficiency and machine learning at scale

nake efficient use of today’s high performance computing hardware is tricky. Only a small number of
ay’s models can run on GPUs and most of the models run at <5% of the available peak performance.

p learning tools are mostly based on dense linear algebra and reduced numerical precision.
DIA TensorCore on V100 GPUs perform matrix-matrix multiplications with:
8 TFlops for double precision
125 TFlops for half precision

first machine learning application in weather and climate modelling has reached the exa-scale.

rsten Kurth et al.: Exascale deep learning for climate analytics. In Proceedings of the International Confer
High Performance Computing, Networking, Storage, and Analysis (SC '18). IEEE Press, Article 51, 1-12, 2(
don Bell Prize!

v much will we be able to learn when training from 1 petabyte of data using petascale supercomputin,



Conclusions

There are a large number of application areas throughout the prediction workflow in weather ar
climate modelling for which machine learning can make a difference.

The weather and climate community is still only at the beginning to explore the potential of
machine learning (and in particular deep learning) at scale and there are challenges to be face

However, an approach that combines collaborations, meetings, scientific studies, targeted

projects, shared datasets, software and hardware developments should allow us to overcome
most of the challenges in the medium-term future.

lease do not forget to register for the ESA-ECMWF Workshop on Machine Learning for
arth System Observation and Prediction — 15-18 November — https://www.ml4esop.esa.in!

any thanks! Peter.Dueben@ecmwf.int @PDuebel
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achine learning in three communities

v did the view on machine learning change from 2018 until today?

‘bold Machine Learning scientist:
ichine learning will replace everything”
Machine learning will replace everything, look here...”

'HPC hardware developer:
ichine learning will dominate future HPC developments”
Here is our new machine learning hardware, please use it”

‘sceptical weather and climate domain scientist:

ichine learning is just a wave going through...”
Machine learning is just a method...”

there is still more that can be done with customised machine learning tools that are easy to use at scale



1allenges for machine learning in weather and climate modelling

ferent sets of tools for domain (Fortran on CPUs) and machine learning scientists (Python on GPUs)
Training and tool development (e.g. CliMetLab)

f-the-shelf machine learning tools are often not sufficient for weather and climate applications
Science, benchmark datasets and tool developments

lining datasets are often not good enough while the data size is huge
Benchmark datasets

a2 still need to learn how to scale up to petascale supercomputers to make the most of machine learnin
Projects such as MAELSTROM and benchmark datasets

egration of machine learning tools into the conventional numerical weather prediction workflow is di
Science and tool developments (e.g. Infero)

achine learning tools need to be updated in model cycles
Science (e.g. Transfer Learning)

ichine learning tools need to be reliable (extrapolating?) for use in operational predictions
Science (e.g. explainable Al, trustworthy Al or physics-informed networks)



n we use deep learning hardware for conventional models?

ew operational model configuration:

del configuration Relative Cost

ible precision 91 levels 100%
gle precision 91 levels 57.9%
ible precision 137 levels 155.5%
gle precision 137 levels 87.5%

gle precision is used for operational
dictions at ECMWF since May 2021

 change from double to single precision and
n 91 to 137 vertical levels allows to reduce
ts and improve predictions

error (hPa)

Tropical cyclone intensity (core pressure) bias
Red: Single precision and 137 vertical levels
Blue: Double precision and 91 vertical levels

- VT: 20191125 - 20201030 All basins
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time step (hours)

Dueben and Palmer 2014 — Lang et al. submitted to



n we use deep learning hardware for conventional models?

« Machine learning accelerators are focussing on low numerical precision and high floprats.
« Example: TensorCores on NVIDIA Volta GPUs are optimised for half-precision matrix-
matrix calculations with single precision output.
— 7.8 TFlops for double precision vs. 125 TFlops for half precision

Can we use TensorCores within our models?

Relative cost for model components for a non-hydrostatic model at 1.45 km resolution:

m Physics

B Dynamics
Semi-implicit
Transforms

 The Legendre transform is the most expensive kernel. It consists of a large number of
standard matrix-matrix multiplications.
» |f we can re-scale the input and output fields, we can use half precision arithmetic.



alf precision Legendre Transformations

Northern extratropics (20N-90N) Tropics (20S-20N)
1.2

— double
4.0 == half-trans-25
-+ tensor_core 1.0

0.8

0.6

0.4

Float1l6 simulation

1]

0.2

Riintime (<)

0.0
0 2 4 6 8 10 0 2 = 6 8 10

Forecast lead time (days) Forecast lead time (days)

ot-mean-square error for geopotential height at 500 hPa at
m resolution averaged over multiple start dates. Hatfield,
antry, Dueben, Palmer Best Paper Award PASC2019

-1.0 -0.5 0.0 0.5
Tracer concentration

e simulations are using an emulator to reduce precision
awson and Dueben GMD 2017) and more thorough
gnostics are needed.

Results from Sam Hatfield on Fug:
(many thanks to Hirofumi Tomita!)
and from Milan Kloewer on Isambs



1allenges for machine learning in weather and climate modelling

erent sets of tools for domain (Fortran on CPUs) and machine learning scientists (Python on GPUs)
the-shelf machine learning tools are often not sufficient for weather and climate applications

ning datasets are often not good enough while the data size is huge

still need to learn how to scale up to petascale supercomputers to make the most of machine learning
gration of machine learning tools into the conventional numerical weather prediction workflow is diff
hine learning tools need to be updated in model cycles

hine learning tools need to be reliable (extrapolating?) for use in operational predictions



achine learning for bias correction

Juring data-assimilation the model trajectory is “synchronised” with observations
Aodel error can be diagnosed when comparing the model with (trustworthy) observations

)roach: Learn model error for a given model state using machine learning

efit: Correct for model error and understand model deficiencies

3stion: What happens when the model is upgraded and the error pattern change?
ution: More work on transfer learning needs to be done

NN Target b) NN prediction
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- = 3 35 ! 0.2
240 =
- — o —'ﬁ—g 0.0
© 45
o |
=50 (-0.2
— — s -0.4
- -0.6
~ 2020-02  2020-03 2020-04 2020-05 2020-06 65 2020-02 2020-03 2020-04 2020-05 2020-06
New NN Target d) New NN prediction
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Cate Date Laloyaux, Dueben, Bonavita @ ECMWF + Kurth and Hall ¢



MEANSD Normalisation

emulate parametrisation schemes = [ —— ————
thod 1.0 — -+ Persistence
oda. — =+ Current FLOF
Store input/output data pairs of a parametrisation scheme 081 " I ZUIL);;OSQEO
Jse this data to train a neural network £ + i
Replace the parametrisation scheme by the neural network within the model g 0.6- =
= [
o - |
y would you do this? S04 . I s e
iral networks are likely to be much more efficient and portable to Loy X
erogenous hardware 0.2 1 : +
|
I
ive area of research: b PR
vallier et al. JAM 1998, Krasnopolsky et al. MWR 2005, Rasp et al. PNAS 2018, Neural network DOF

nowitz and Bretherton GRL 2018...

emulate the non-orographic gravity wave drag within the Integrated Forecasting System (IFS)
antry, Hatfield, Dueben, Polichtchouk and Palmer https://arxiv.org/abs/2101.08195

sults:

Nice relationship between neural network complexity and error reduction

Similar cost when used within [FS on CPU hardware and 10 times faster when used offline on GPUs
-mulator was used successfully to generate tangent linear and adjoint code within 4D-Var data assimilatiol
1atfield, Chantry, Dueben, Lopez, Geer, Palmer in preparation

-orecast error can be reduced when training with more angles and wavespeed elements



precondition the linear solver

_inear solvers are important to build efficient semi-implicit time-stepping schemes for atmosphere and ocean mo

However, the solvers are expensive.

The solver efficiency depends critically on the preconditioner that is approximating the inverse of a large matrix.

1 we use machine learning for preconditioning, predict the inverse of the matrix and reduce the number

ations that are required for the solver?

tbed: A global shallow water model at 5 degree resolution but with real-world topography.
thod: Neural networks that are trained from the model state and the tendencies of full timesteps.

preconditioner:

Linf Residual

>

0 1 2 3 4 5 6 7 8 9 10 11 12 13
Solver Iterations

Machine learning preconditioner:

109-
105_

101_

---- Max
—— Median
-==- Min

2 3 456 7 8 9
Solver Iterations

10 11 12 13

Linf Residual

109_
105 4

101_

103

Implicit Richardson precondi

012 3 456 7 8 9 10

Solver Iterations

irns out that the approach (1) is working and cheap, (2) interpretable and (3) easy to implement

n if no preconditioner is present.



ost-processing and dissemination: ecPoint to post-process rainfall predictic

Jse forecast data as inputs
rain against worldwide rainfall observations

mprove local rainfall predictions by accounting Probability (%) > 50mr
or sub-grid variability and weather-dependent biases

Jse decision trees as machine learning tool

b
()?) - C)D‘C) b.c)%.c),\g-\?‘

N D

d-~
L
D3 - -

D4 - D3 D2 - D1 =~
mple: Devastating floods in Crete on 25 February 2019 :°:° et
efits: Earlier and more consistent signal with higher probabilities zatrran

Timothy Hewson and Fatim



post-processing ensemble predictions
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semble predictions are important but expensive.

n we improve ensemble skill scores from a small number of ensemble members via deep learning?

Use global fields of five ensemble members as inputs.

Correct the ensemble scores of temperature at 850 hPa and Z500 hPa for a 2-day forecast towards a full -
member ensemble forecast.



babilistic down-scaling

-

|
100

IFS

NIMROD

10

GAN pred 1
Rain rate [mm h™1]

GAN pred 2

GAN pred 3

Map IFS model data at ~10 km resolution to NIMROD precipitation observations at ~1 km resolution
Test Generative Adversarial Networks (GANs) and Variational Autoencoders (VAs)
Generate ensembles to represent the uncertainty of the mapping.



1allenges for machine learning in weather and climate modelling

ferent sets of tools for domain (Fortran on CPUs) and machine learning scientists (Python on GPUs)
Machine learning roadmap via training and tool development (e.g. CliMetLab)

f-the-shelf machine learning tools are often not sufficient for weather and climate applications
Machine learning roadmap, MAELSTROM and COE via benchmark datasets and tool developments

lining datasets are often not good enough while the data size is huge
MAELSTROM via benchmark datasets

a2 still need to learn how to scale up to petascale supercomputers to make the most of machine learnin
MAELSTROM via co-design cycle

egration of machine learning tools into the conventional numerical weather prediction workflow is di
Science and tool developments, COE, and tool development (e.g. Infero)

achine learning tools need to be updated in model cycles
Science and tool developments and COE via Transfer Learning

ichine learning tools need to be reliable (extrapolating?) for use in operational predictions
Science and tool developments



