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Why machine learning for parameterizations?

= Parameterization problem in atmospheric models:
Find a nonlinear relation between resolved model variables x = (x1, x2, x3,...)
and unresolved processes P = (p1, p2, p3, ...)

P = (x)

using physical reasoning, measurements or benchmark simulations.

= Machine learning (supervised learning):
Find a nonlinear relation between features x = (x1, x2, x3,...) and labels

y=(y1,¥y2,vy3, ...)
y = f(x)

using data (measurements or benchmark simulations).
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Bulk microphysics parameterizations

= Bulk microphysics parameterizations need to approximate integrals of the type

AU:/* / O FOMNKES, xx dx' dx”,
x'=0 Jx"=x,—x'

This is the warm-rain autoconversion and x is particle mass, f(x) is the particle
size distribution (PSD) and K(x,y) is the collision kernel. Similar integrals apply
for accretion, riming and aggregation.
> Traditionally there are 3 different approaches to parameterize these integrals
1. Analytic parameterizations with an assumed PDF for f(x)
2. Tabulated schemes with pre-calculated values using an assumed PDF for f(x)

3. Regression models based on simulations with bin or particle-based models as
data. In this case f(x) is provided by the benchmark simulation.

= |In some sense, ML-based bulk microphysics is simply a new workflow for a
regression model.

# 3
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ML-based microphysics development workflow

= Do reference simulations using a resolved microphysics. Here we use the
super-particle method of Shima et al. (2009)

=» The simulations should cover the whole range of physically plausible values,
because the ML-based model is good for interpolation but quite bad for
extrapolation.

=» Calculate the bulk microphysical process rates like autoconversion or accretion
based on the reference simulations.

=» Train a neural network for each process rate. Here we can play with different
sets of predictors.

=» To validate the parameterization we solve the ODE system using the neural
networks for the process rates and compare the solutions with the reference
simulations.
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Training the ML model

= We use the Keras/Tensorflow library to train an artificial neural network
(multilayer perceptron).

=» Separate data in training, validation and testing data
= Log transform of process rates (labels) and predictors (features)

=» Standardization of transformed variables. After this the predictors have
a mean of zero and a standard deviation of one.

= For warm-rain autoconversion possible predictors are:
=> cloud water content L.
=» cloud droplet number N¢ or drop mass Xc
=>» shape parameter nu
=> rain water content L,

=> dimensionless time scale tau=L./(Lc+L)
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Overview of training and testing data

Initial conditions

training (+validation) testing
Ly (g m™3] 0.2,0.4, 0.6, 0.8, 1.0, 2.0 0.3,0.5,0.7,0.9, 1.5
7o [pm] 9,10, 11, 12,13,14, 15 9,10,11,12,13, 14, 15
\% 0,1,2,3,4 0.5,1.5,2.5,3.5
n 5(+2) 5

potential predictors P (features)
AU AC SC, SC,

L.,x.,v,L,t L.,x.,v,L,X%X,7© L.,,N.,X.v,© L,N,,

=
3
h\

data reduction for label-feature vectors

AU AC SC, SC,
AU > ¢e; AC > ¢ SC.> ¢ SC, > ¢
P,,>e¢ P,.>¢q P o >¢€p Py 1> €
7<0.85 7<0.99 L,>10"*gm™3 L,>10"*gm™3
total number of samples after data reduction (without validation data)
AU AC SC, SC,
train test train test train test train test

179,133 114,312 316,141 185,956 365,705 220,119 309,151 181,247

Note. n is the number of ensembles using different random number seeds for the same initial condition.
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Simple fully connected neural net with 3 layers

def build model(ncol):
model = keras.Sequential([
layers.Dense(1l6, activation='tanh', input shape=[ncol]),

layers.Dense(16, activation='tanh'), . .

layers.Dense(1l6, activation='tanh'), <::| We can play with the size of the NN and
layers.Dense(1) test different activation functions like

1) tanh, sigmoid or RelLU.

optimizer = tf.keras.optimizers.RMSprop(0.001)

model.compile(loss="mse',
optimizer=optimizer,
metrics=[ 'mae’', 'mse'])

Layer (type) Output Shape Param #
Z:nse (Dense) (None, 16) 64
dense 1 (Dense) (None, 16) 272
dense 2 (Dense) (None, 16) 272
dense_ 3 (Dense) (None, 1) 17

Total params: 625 .
Trainable params: 625 <:| The model hgs_ ~600 trainable parameters.
Non-trainable params: 0 Hence, overfitting should not be an issue.
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Result of the machine learning step:

= Error measures against the testing data

25 1e-8 Scores for machine learning vs classic parameterizations using sigm
mm MAE
mm MSE
2.0
1.5
n
[0}
S
o
?
1.0
0.0
Model 1: Model 2: Model 3: Model 4: Model 5: Model 6: SB2001 SB new KK2000 Power

Le-Xe Lc-xc-nu Le-xc-nu-Lr  Le-xc-nu-tau  xc-nu-tau xc-tau

= Machine learning seems be able to improve over bulk schemes like SB2001
= Including rain as predictor improves the autoconversion rate.

7
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Partial dependency analysis for all 4 process rates
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Figure 6. Partial dependence plots for the neural networks as described and selected in section 5. Autoconversion is ML Model 4 of Table 2. Red dashed lines
denote predictions for SB2001. For AC, we used their Equation 21, for AU Equation 16, for SC. Equation 14, and for SC, Equation 19. For the variables that
were not varied, the mean over the test set was used to create the SB2001 predictions.

= Hence, ML can indeed recover the dependencies of the SB2001 scheme.

=» ML is not necessarily a black box, we can check what the scheme is doing.

# ;
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The warm-rain parameterization needs to solve the ODE

drL,
= —-AU — AC,
dt
dL,
= +AU + AC,
dt
dN, = -2AUy —ACy — SC, = —EAU— lAC’— SC
dt - N N c x* )—Cc ¢
dN, 1
— = +AU, + ACy - SC, = +=-AU - 5C,,

= Will the ML models perform as well as SB2001 for the ODE solutions?

# ;
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ODE solutions and super-droplet benchmark:
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Figure 7. Time series of the rain water content for the solution of the KCE and the ODE solutions using SB2001 and
ML Model 4 with autoconversion predictors L., X., v, and 7. Black and gray colors are the KCE solutions, red to orange
colors for SB2001, and bluish colors the ML model. Shown are four difference initial conditions with (from left to right,
different hue of colors) (1) Ly =1gm™3,7, =14 pum,v=0; (2) i =0.7gm™3, 7y = 14 pm, v=0; (3) L, = 0.7 g m~3,
Fo=11pm,v=0;(4)Ly=0.5gm™3,F, =11 pm, v = 2.

> The ML-based model does okay, but the dependencies are not quite right.

# :
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The warm-rain ML-based microphysics

The ML approach provides a viable warm-rain parameterization, but does not
perform as good as the Seifert and Beheng (2001) scheme.

The reasons for the deficiencies of the ML-based warm-rain scheme are
discussed in the paper:

Seifert, A., & Rasp, S. (2020). Potential and limitations of machine learning for modeling warm-

rain cloud microphysical processes. Journal of Advances in Modeling Earth Systems, 12,
https://doi.org/10.1029/2020MS002301

Python scripts and the training data for the warm-rain scheme are publicly
available from

https://gitlab.com/axelseifert/warmrain

* ;
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An ML-based P3-like multimodal extension
of the two-moment bulk scheme in ICON

= ML-based: The new scheme is based on machine learning (ML) using neural
nets or perceptrons and supervised-learning to approximate microphysical
processes

> P3-like: Following the P3 scheme of Morrison and Milbrandt (2015) the
scheme predicts particle properties like rime mass (or rime fraction) and rime
density in addition to traditional bulk moments like mass and number density.

= Multimodal: In contrast to the original P3 scheme the ML-based scheme still
uses several categories or modes.

> Extension: The ML-based parameterizations replace only the ice
microphysical processes in the ICON two-moment scheme. The warm-rain
parameterizations and other processes like ice nucleation remain unchanged.

* ;
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ML for ice microphysics

=» To generate the training data we use
the Lagrangian particle model
McSnow that explicitly resolves ice
processes (Brdar and Seifert 2018)

=» Each McSnow particle has severals
variables that describe its current
microphysical state.

= Needs at least 1000 particles per grid
point, better 10000 to reduce Monte-
Carlo noise.

=» These are expensive simulation that
are even today hardly feasible in 3d.

McSnow processes and variables

Processes Prognostic Variables

nucleation
ice mass m,
vapor diffusion
sedimentation

number of monomers
coalescence

aggregation

rime mass m,

riming

rime splintering
o / rime density p,

melting & shedding
L3

hydrodynamic breakup
liquid mass m,,
collision breakup

Locatelli & Hobbs 74

R

14
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ML for ice microphysics

= We try to built an ODE system with 6 particle classes:

=>» ice monomers, snow aggregates, rimed ice, rimed snow
graupel and rain (and cloud droplets).

= All classes have mass and number densities, rimed classes (including graupel)
have in addition rime mass, rime volume and liquid mass.

=» Hence, for rimed particle classes with have rime fraction, rime density and
melted fraction as bulk properties (P3-like scheme).

v

This makes a total of 23 variables and more than 100 process rates.

= Can we ,learn” all those process rates from McSnow output and come up with
an ODE system that works reasonably well?

§i§ 15
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Training data for bulk ice microphysics:

= We use an idealized box model falling through a prescribed atmosphere.

=» The idealized box model allows many simulations. This is preferred here
over a few 3d simulations.

=» Training data is generated by Latin hypercube sampling of initial condition
and atmospheric profile resulting more than 10.000 simulation.

=» This can cover a large range of parameters.

=» |t proved to be necessary to include updraft parcels in the training data to
better represent processes within the convective core.

= Maybe another advantage of the idealized box model approach is that it
does not contain an imprint of the current climate, in contrast to more
realistic simulations.

§i§ 16
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Parcel falling through an atmospheric profile

iwc0100_Iwc0200_nrp010_rm15_ssi05_1000_1000_2500 iwc0100_Iwc0200_nrp010_rm15_ssi05_1000_1000_2500
4000 —— X 4000 S - _
*‘;:Z:u._ ‘, —=ice § *x':.{.‘ /' — ice
\\;t‘;ll —=— Show 7 3 —— SNOW
N, — ; —— rimed ice
2277 N\ rimed ice | rime
i - | . L
3000 4 277 i == rimed snow 3000 - rimed slnow
¥ ] — graupel . — graupe
1 i - — cloud
i cloud cl
E == S —- rain E —- rain
£ N N £ 1
— AY ‘\\ — =
‘c 2000 N \\ = 2000
] ] \ A\ 2 .
© \ \\ [}
< \ A\ <
\ \\ ,
i \\
1000 4 | * ) 1000 -
9 R
\<;~;‘~.. "‘5/
A
. AR
0 —_— N 0 T
1 2 3 4 5 6
102 10" 10° 10" 10 10 10 10 10 10
. . _3
water content in g/m° number density in m

= height = f(time), i.e. parcel falling through a prescribed atmosphere.

=» Mass and number densities for McSnow (solid), diagnosed ODE (dotted) and
the ML-based ODE (dashed)
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Some more details on ML approach

= Here we have used Tensorflow/Keras to train rather simple fully connected
neural nets (perceptron).

=» Features (input variables) and labels (output variables, process rates) are log-
transformed, when appropriate, and standardized, i.e., normalized by mean
and standard deviation.

= One small neural net with 16 nodes and 2 hidden layers for the regression
model for each microphysical process rate.

=» RelLU activation is used and different optimizers (SGD, Adam) are applied to
find the best network parameters.

= For some processes a classifier network is used to decide whether the process
is non-zero, before the regression neural net is applied (Gettelmann et al.
2020, JAMES).

=» Parameters of neural nets are stored in NetCDF files.

éié 18
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Implementation in the ICON model

= Read neural network parameters from NetCDF and broadcast to all processors
(only once during model initialization).

=» Use a Fortran implementation of the evaluation (inference) of the neural net
(based on Fornado of Leonhard Scheck and Fabian Jakub, LMU)

https://qgitlab.com/LeonhardScheck/fornado

= Vectorized on NEC Aurora using index lists.

7

About 50 % of the time spent on the microphysics scheme is then the
evaluation of the neural nets.

= Remaining time includes the preparation of the index lists, but also
sedimentation, ice nucleation, warm-rain processes etc.

= The ML-based scheme with 23 variables is about twice as expensive as the
standard two-moment scheme with 13 variables.

éié 19
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Simulation of an idealized squall line with ICON

=» Vertical cross section of hydrometeors: ML-based vs classic two-moment
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Simulation of an idealized squall line with ICON

=» Radar reflectivity (Rayleigh approximation)
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Simulation of an idealized squall line with ICON

=» Total rime fraction and rime fraction of ,rimed snow*

rime fraction (total)
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Simulation of an idealized squall line with ICON

=>» liquid fraction of graupel
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Lessons learned

= Machine learning provides an easy-to-use workflow to built regression models
from training data. This can be used to develop bulk microphysical schemes.

= In my opinion, this is interesting also for ,physics people®, because

1. The most important step is to develop the benchmark model that is used
to create the training data.

2. The choice of the variables for the bulk model will determine it’'s
behavior.

3. The setup of the simulations with the benchmark model is a crucial step
and requires a good understanding of the relevant physics.

4. Afterwards we should take the time and investigate what the ML model
is doing, e.g., does it have the correct asymptotic behavior? How can we
guarantee that?

=» Overall, ML methods provide an alternative approach to develop physical
parameterization with the promise to speed-up the development process.

% ;
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Conclusions and Outlook

= Machine learning can indeed be used to built regression models of
microphysical processes based on benchmark particle simulations, e.g.,
using super-droplets or the Lagrangian particle model McSnow.

=» For warm-rain autoconversion a straightforward ML-based scheme is inferior
to established parameterizations like Seifert and Beheng (2001), see Seifert
and Rasp (2020) for details.

= The extension of the ICON two-moment microphysics scheme with a ML-
based P3-like ice microphysics works well and produces a more pronounced
stratiform region for the idealized squall line.

> Hence, the straightforward approach to train process rates with standard ML
methods works reasonably well, but more advanced approaches should be
explored in the future.
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