

SRNWP at FMI in 2021

Reima Eresmaa, Anders Lindfors, Laura Rontu & Markku Kangas

Developments in the use of satellite radiance data in HARMONIE-AROME

Improvements in the detection of cloud in IASI data

McNally & Watts cloud detection (2003):

- Take a large number of channels from the 15 μ m long-wave infrared sounding band
- We use 148 channels to detect cloud in IASI (Infrared Atmospheric Sounding Interferometer) data
- Many of the cloud-detection channels are not used in the assimilation
- Rank observation minus background (O-B) departures in vertical and apply a smoothing filter
- Find the "breaking point" that marks the distinction

Testing an alternative strategy to update VarBC coefficients in LAM

between clear and cloud-affected channels

- Previously we applied bias correction only to the subset of actively-assimilated channels
- Improved performance through bias-correcting the cloud-detection channels too

McNally & Watts (2003): A cloud detection algorithm for highspectral-resolution infrared sounders. https://doi.org/10.1256/qj.02.208

Improved cloud detection \rightarrow more homogeneous sampling of tropospheric sounding channels

Improved cloud detection \rightarrow more complete sampling of stratospheric sounding channels

Background field information in 3-hourly cycling Background VarBC information in 24-hourly cycling Background field information in 3-hourly cycling Passing VarBC coefficients without updating them Transferring updated VarBC coefficients after 06Z analysis only

- Currently we apply 24-hour cycling for variational bias correction (VarBC) coefficients to avoid problems due to large variations in observation coverage
- We are considering to switch to 3-hour cycling in VarBC
- However limiting the updating of VarBC coefficients once per day
- The satellite-specific VarBC update times will be chosen such that observation coverage is "as complete as possible", but potentially also taking into account the availability of radiosonde data to provide anchoring

Example: Improved monitoring statistics in MicroWave Humidity Sounder 2 of Fengyun 3D satellite (FY3D MWHS2)

- Showing mean and standard deviation in O-B departure in a 34-day sample over the MetCoOp LAM domain
- Red lines: Control system with the current VarBC update strategy
- Blue lines: Proposed VarBC update strategy
- VarBC coefficient update time set to 12Z for FY3D MWHS2 data

-2,0 -1,5 -1,0 -0,5 0,0 0,5 1,0 1,5 2,0

Departure [K]

Testing and development of radiation and aerosol parameterizations in HARMONIE-AROME

Impact of aerosols on NWP is often studied during wildfire, dust intrusion, volcanic eruption episodes. From the point of view of everyday forecast, that may include a forecast of the direct solar radiation for energy producers, it would be interesting to evaluate model performance - the range of uncertainty, possible bias, related to aerosols in clean-air conditions.

As an example, the figure shows radiation in Helsinki on the 19th of April 2021. Shown are direct normal irradiance (DNI), global (GHI, global) and diffuse (DHI, diffuse) short-wave radiation fluxes at the surface. Thin solid curves show observed every-minute values, thick and thin curves with dots show operational HARMONIE-AROME (opehar) and HIRLAM (opehir) hourly-averaged results. Two vertical lines denote 6 UTC and 7 UTC, when singlecolumn model (MUSC) diagnostic ex-

periments were run. At 7 UTC, a thin ice cloud appeared around the pressure level of 200 hPa, with a very small vertically integrated specific ice content of 1 g/m².

In the operational HARMONIE-AROME forecast, the Tegen aerosol optical depth and

In all cases, the lowest global and direct and the highest diffuse SW fluxes were due to the use of default Tegen AOD at 550nm of 6 aerosol species². As expected, the highest global and direct, lowest diffuse fluxes were obtained when no aerosols were assumed. In-between and closer to the observations are the values from experiments, where aerosol input was derived from the mass mixing ratio (MMR) of 11 aerosol species using the new aerosol inherent properties from ECMWF. Either two-dimensional total climatological or three-dimensional near-real-time MMR values were obtained from Copernicus Atmosphere Monitoring Service data via three-dimensional HARMONIE-AROME experiments.

The range of differences/uncertainty was tens of W/m² for global (340-382/458-504), diffuse (44-86/61-156) and direct solar radiation at the surface. Direct normal irradiance (682-893/626-915) appeared the most sensitive to aerosol and clouds variable. This is because of its large range of values that depend on the solar elevation. The magnitude of aerosol impact was comparable to the impact of a thin (cirrus) cloud. The IFS radiation parametrizations reacted strongly to the cloud, independently of the aerosol impact. The total aerosol optical depth at 550 nm was well correlated with the radiative impact, although it is not directly applied in the model's parametrizations.

¹ DNI is not shown for	Downwelling SW radiation at the surface [W/m ²]			
HIRLAM. It would be	and aerosol optical depth at 550 nm [unitless]			
obtained from the				

difference alobal-		DNI 6 / 7 UTC	Global 6 / 7 UTC	Diffuse 6 / 7 UTC	Total AOD550		
	Observed	769 / 835	367 / 494	63 / 76	0.07		
diffuse divided by	Zero aerosol				0.00		
cosine solar zenith	IFS	887 / 760	382 / 492	45 / 122			
angle.	hlradia	881/912	380 / 504	47 / 61			
	acraneb	893/915	384 / 504	44 / 58			
² The monthly	Tegen 2D AOD550				0.21		
climatological values,	IFS	697 / 626	350/461	86 / 156			
aiven in a coarse	hlradia ¹	701 / 782	340 / 458	74 / 78			
latituda-longituda grid	acraneb	682 / 742	345 / 465	86 / 104			
	CAMS 2D AOD550				0.17		
of 2.5 degrees, are	IFS	738 / 656	359/471	78 / 152			
interpolated	hlradia	751/818	352/473	68 / 76			
horizontally to the	acraneb	734 / 785	365 / 476	78/94	0.07		
model's 25 km arid	CAMS 2D MMR	000 / 700	2744405	50 / 105	0.06		
	IFS-sul ²	8297720	3747485	597135			
and distributed to the	hlradia ¹	751/818	363 / 492	55/66			
model levels according	hlradia-all ³	847/888	3727495	52/64			
to predefined	acraneb	831/866	3727493	5///1	0.12		
exponential profiles	CAMS 3D n.r.t.	7041600	260 / 405	70 / 1 / 7	0.12		
		/84 / 689	369/485	/2/14/			
then complhed with	hiradia hiradia all ³	831/852	363 / 486	62772			
hardcoded inherent	niradia-all°	810/801	302/484	50/00			
optical properties for	acraned	18/1830	308/489	09/85			
different SW and LW	¹ hlradia aerosol inherent optical properties derived from GADS/OPAC aerosols for 6 IFS species (Baklanov et						
	al. 2017, https://doi.org/10.5194/gmd-10-2971-2017)						
wavelengths.	² indirect effect of sulfate aerosols parametrized						
	³ aerosol inherent optical properties from ECMWF/CAMS (Bozzo et al. 2020, https://doi.org/10.5194/gmd-						
	13-1007-2020)						

the IFS radiation scheme are applied by default. In the operational HIRLAM forecast, simple prescribed coefficients account for aerosol scattering and absorption. In this clean-air case, opehir performed well for the global and diffuse radiation¹; opehar underestimated the direct and overestimated diffuse radiation flux, also the global radiation was somewhat underestimated.

Single-column (MUSC) experiments were run in order to understand the uncertainties and sensitivities of the radiation fluxes to the aerosol treatment and radiation parametrizations. The short vertical bars show the range of values suggested by three different radiation schemes, available for HARMONIE-AROME experiments: the default IFS cycle25 scheme (*red*), acraneb (*green*), hIradia (*blue*). **N** in the end of the bars denotes the results obtained when no aerosol was assumed in the calculations, T denotes results due to the use of default Tegen aerosol and related optical properties. MUSC output represent instant (one-minute) values. Details of the MUSC results - the numbers inside the vertical bars - are given in the table. Preliminary conclusions based on the MUSC experiments are given here.