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Developments in the use of satellite radiance data in HARMONIE-AROME

Improvements in the detection of cloud in IASI data

Testing an alternative strategy to update VarBC coefficients in LAM

Previous setup McNally & Watts cloud detection (2003): Update strategy as it stands (for NOAA-19) Proposed update strategy (for NOAA-19)
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Example: Improved monitoring statistics in MicroWave Humidity Sounder 2 of

Fengyun 3D satellite (FY3D MWHS2)

* Showing mean and standard deviation in O-B departure in a 34-day sample over the
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Testing and development of radiation and aerosol parameterizations in HARMONIE-AROME

[ Impact of aerosols on NWP is often In all cases, the lowest global and direct and the highest diffuse SW fluxes were due to
Flux NL | | studied during wildfire, dust intrusion, the use of default Tegen AOD at 550nm of 6 aerosol species?. As expected, the highest
W/m? ™ DN| vol.canic _eruption episodes. From the global and direct, lowest diffuse fluxes were obtained when no aerosols were assumed.
800 | point of view of everyday forecast, that  |n-between and closer to the observations are the values from experiments, where

may include a forecast of the direct solar  aeros0] input was derived from the mass mixing ratio (MMR) of 11 aerosol species
700 { | radiation for eneriqy produge{s, |tfwould be  ,sing the new aerosol inherent properties from ECMWF. Either two-dimensional total
T miﬁrestlng 0 ?va uat? mct) © per_g:fmgnce climatological or three-dimensional near-real-time MMR values were obtained from
600 - - . . . . . . .
© fange ot uncerainty, possibie bias, Copernicus Atmosphere Monitoring Service data via three-dimensional HARMONIE-
related to aerosols in clean-air conditions. .
. NI,.i AROME experiments.
[t /1 |— GHI inaas As an example, the figure shows radiation _ _ ,
400 { | 2 SI.II,' Ko ons in Helsinki on the 19th of April 2021. T.he range of dlﬁerences/ungertalnty was.te.ns of W/m? for glob_al (340-382/.458-.504),
| \' T |— DNI meas Shown are direct normal irradiance (DNI),  diffuse (44-86/61-156) and direct solar radiation at the surface. Direct normal irradiance
1Y global (GHI, global) and diffuse (DHI, (682-893/626-915) appeared the most sensitive to aerosol and clouds variable. This is
ool ] | d n‘fu e diffuse) short-wave radiation fluxes at the because of its large range of values that depend on the solar elevation. The magnitude
I/ T| surface. Thin solid curves show observed  of aerosol impact was comparable to the impact of a thin (cirrus) cloud. The IFS
1004 / ! ﬁ’_==§§opﬁhar | every-minute values, thick and thin curves radiation parametrizations reacted strongly to the cloud, independently of the aerosol
A |_| ' ik ' with dots show operational HARMONIE-  impact. The total aerosol optical depth at 550 nm was well correlated with the radiative
0 N » AROME (opehar) and HIRLAM (opehir)  impact, although it is not directly applied in the model's parametrizations.
|| | | ' ' hourly-averaged results. Two vertical lines | _ o ,
04-19 04 04-19 08 04-19 12 04-19 16 denote 6 UTC and 7 UTC, when single- 1 DNI is not shown for Downwelling S\.?V radiation at the Surfatfe [W/m~]
HIRLAM. It would be and aerosol optical depth at 550 nm [unitless]

Date 2021 time UTC column model (MUSC) diagnostic ex-
periments were run. At 7 UTC, a thin ice cloud appeared around the pressure level of

obtained from the
difference global-

DNI6/7UTC Global6/7 UTC Diffuse6/7 UTC Total AOD550

. . . F TR : .. Ob d 769 / 835 367 /494 63/76 0.07

200 hPa, with a very small vertically integrated specific ice content of 1 g/m?2. diffuse divided by Zero nerosol 0.00
cosine solar zenith IFS 887 /760 382/492 45/ 122
- - anale. hiradia 881/912 380/ 504 471761
In the opergtlc_)nal HARMONIE-AROME forecast, the Tegen ae_rosol optical depth and J ~cranch 203 /915 284/ 504 14758

the IFS radiation scheme are applied by default. In the operational HIRLAM forecast, 2 The monthly Tegen 2D AOD550 0.21
simple prescribed coefficients account for aerosol scattering and absorption. In this ~ climatological values, 18 | i o 1o p

. . . . nin r

clean-air case, opehir performed well for the global and diffuse radiation!; opehar %;teu d; Iirf;f‘uzg gig e 682 /742 345 / 465 36/ 104

- - - - P ) CAMS 2D AODS50 0.17
underestimated the direct and overestimated diffuse radiation flux, also the global of 2.5 degrees, are - 38/ 656 259/ 471 27150
radiation was somewhat underestimated. interpolated hlradia’ 751/818 352/ 473 68 /76
- acraneb 734 /785 365 /476 78 /194

| | | o horlzo'ntally to the_ CAMS 2D MMR 0.06
Single-column (MUSC) experiments were run in order to understand the uncertainties model's 2.5 km grid IFS-sul’ 829 /720 374/ 485 59/ 135
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and sensitivities of the radiation fluxes to the aerosol treatment and radiation ~ &n°cdstibutedfothe R o ek 4o e
parametrizations. The short vertical bars show the range of values suggested by three to predefined J acranch 831/3866 372/ 493 57171

different radiation schemes, available for HARMONIE-AROME experiments: the  exponential profiles, a5 3D Kt T4 ) 686 160 455 17 012
default IFS cycle25 scheme (red), acraneb (green), hiradia (blue). N in the end of the then combined with hiradial 831/852 363 /486 62/72
bars denotes the results obtained when no aerosol was assumed in the calculations, T hardcoded inherent radic-all e e o

i i optical properties for )
denOteS reSUItS due o the use of defaUIt Tegen aerOSOI and related Optlcal prOpertleS' d!:;ferenrt) S\F/)V and LW ! hlradia aerosol inherent optical properties derived from GADS/OPAC aerosols for 6 IFS species (Baklanov et

MUSC output represent instant (one-minute) values. Details of the MUSC results - the
numbers inside the vertical bars - are given in the table. Preliminary conclusions
based on the MUSC experiments are given here.

al. 2017, https://doi.org/10.5194/gmd-

10-2971-2017)

wavelengths. 2 indirect effect of sulfate aerosols parametrized
% aerosol inherent optical properties from ECMWEF/CAMS (Bozzo et al. 2020, https://doi.org/10.5194/gmd-

13-1007-2020)




