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NEW ENSEMBLE-ONLY FORECASTING SYSTEM WITH HIGH-RESOLUTION DATA ASSIMILATION CYCLE FOR THE ALPINE REGION

COSMO-1E

11 members at 1.1 km mesh size
8x per day up to +33/45 hours

grid points: 1170 x 786 x 80

ICs: KENDA-1 analysis

LBCs: IFS ENS (HRES for control)
Model perturbations: SPPT

N members

KENDA-1

first guess (FG) ensemble every hour

COSMO-2E

21 members at 2.2 km mesh size
4x per day up to +120 hours

grid points: 582 x 390 x 60

|ICs: upscaled KENDA-1 analysis
LBCs: IFS ENS

Model perturbations: SPPT

40 + 1 members at 1.1 km mesh size
grid points: 1170 x 786 x 80

LBCs: IFS HRES + IFS ENS pertur-
bations (+1 day lead time)

SPPT, latent heat nudging
hourly LETKF analysis

Cray CS-Storm cluster

3 cabinets divided into two logical partitions:
production + R&D

12+6 compute nodes with

2 Intel Skylake (8 cores) CPUs
8 NVIDIA Tesla V100 GPUs

10+10 post-processing and 3+3 login nodes with 2 Intel
Skylake (20 cores) CPUs

node assignment to partitions exchangeable within 10 min

Time-to-solution for COSMO 5.08,
single precision:
COSMO-1E: 50 min (for +33h)
COSMO-2E: 40 min
KENDA-1 FG: 9 min
LETKF: 8 min

ASSIMILATION OF SURFACE TEMPERATURE AND MOISTURE TO IMPROVE FOG FORECASTS

Difficulties with fog forecasts

COSMO fog forecasts often suffer from an incorrect
thermodynamical boundary layer structure due to in-
sufficient constraints by near-surface observations.
To improve this situation, assimilation experiments
using T2m and RH2m in the KENDA-1 system have
been carried out.

Results
Impact on analysis mean cloudiness
Experiment Reference

Satellite

Cloudiness as observed by satellite (right) and analysed by KENDA-1 (middle and right)

Experimental Setup

Reference: KENDA-1 with operational observa-
tions (Surface pressure, TEMP, AIREP, Wind Pro-
filer, Radar precipitation)

Experiment: As reference but including T2m and
RH2m observations

Period: 21.11.-21.12.2020

Locations of actively assimilated surface observations

Impact on forecasts
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Summary

. Successful assimilation of T2m and RH2Z2m

. . Improves thermodynamical structure of near-
surface atmosphere

. . Improves fog and low stratus in stable situations
. . Impact into forecast time lasts up to +24h
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PHYSICS-CONSTRAINED DEEP LEARNING FOR POST-PROCESSING OF SURFACE TEMPERATURE AND HUMIDITY

A simple experiment to demonstrate how we can prescribe specific physical pro-

cesses in our Deep Learning models, thus ensuring the physical consistency of the

output while integrating meteorological expertise.

Unconstrained approach
Neural Network (NN) predicts target variables directly

Problem: violations of physics are possible, e.g., if
the NN model predicts T < Ty

Constrained approach

Inspired by framework from Beucler et al. (2021)
Optimizable NN predicts subset of variables
Remaining variables are derived from analytical
(thermodynamic) equations, implemented as an
additional custom layer of the NN model
Optimization based on all five variables, such that re-
lationships between them are strictly respected while
reducing the error for all of them simultaneously.

No violation of physics.
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Results
Experiment: local post-processing of a station in Magadino
(MAG)
Outputs hourly observations from 2015 to 2020
Inputs B
I L1 i Td ‘o mm Constrained B Unconstrained mm NWP dmo
P P 3-5-
LLm RH 3:0-
. 75 246

20 -

MAE

176 178

15 1

10

0.5 -

0.0 -

NN | ThermodynamicLayer

I'ul r* P
Direct I'.I r4e
Outputs |

Emperature Dew point temperature

Target

= e |
| Residual

Inputs | Outputs

Comparable performance (Mean Absolute Error), with
added value of physical consistency.

Violations in independent test set predictions:
Constrained: 0.0 %
Unconstrained: 2.5%
NWP: 0.0 %
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