

Schweizerische Eidgenossenschaft Confédération suisse Confederazione Svizzera Confederaziun svizra Federal Department of Home Affairs FDHA Federal Office of Meteorology and Climatology MeteoSwiss

MeteoSwiss

Numerical Weather Prediction at MeteoSwiss

P. Steiner, D. Leuenberger, D. Nerini, A. Pauling, A. Walser, F. Zanetta

New ensemble-only forecasting system with high-resolution data assimilation cycle for the Alpine region

COSMO-1E

- . 11 members at 1.1 km mesh size
- . 8x per day up to +33/45 hours
- . grid points: 1170 x 786 x 80
- . ICs: KENDA-1 analysis
- . LBCs: IFS ENS (HRES for control)

Cray CS-Storm cluster

- 3 cabinets divided into two logical partitions: production + R&D
- . 12+6 compute nodes with
 - . 2 Intel Skylake (8 cores) CPUs
 - . 8 NVIDIA Tesla V100 GPUs
- 10+10 post-processing and 3+3 login nodes with 2 Intel Skylake (20 cores) CPUs

. Model perturbations: SPPT

COSMO-2E

- 21 members at 2.2 km mesh size
- . 4x per day up to +120 hours
- . grid points: 582 x 390 x 60
- . ICs: upscaled KENDA-1 analysis
- . LBCs: IFS ENS
- . Model perturbations: SPPT

KENDA-1

first guess (FG) ensemble every hour

- 40 + 1 members at 1.1 km mesh size
- . grid points: 1170 x 786 x 80
- LBCs: IFS HRES + IFS ENS perturbations (+1 day lead time)
- SPPT, latent heat nudging
- hourly LETKF analysis

- . node assignment to partitions exchangeable within 10 min
- Time-to-solution for COSMO 5.08, single precision:
 - . COSMO-1E: 50 min (for +33h)
 - . COSMO-2E: 40 min
 - . KENDA-1 FG: 9 min
- LETKF: 8 min

ASSIMILATION OF SURFACE TEMPERATURE AND MOISTURE TO IMPROVE FOG FORECASTS

Difficulties with fog forecasts

COSMO fog forecasts often suffer from an incorrect thermodynamical boundary layer structure due to insufficient constraints by near-surface observations. To improve this situation, assimilation experiments using T2m and RH2m in the KENDA-1 system have been carried out.

Results

Impact on analysis mean cloudiness

Experiment

Satellite

Reference

Experimental Setup

- . Reference: KENDA-1 with operational observations (Surface pressure, TEMP, AIREP, Wind Profiler, Radar precipitation)
- Experiment: As reference but including T2m and RH2m observations
- . Period: 21.11.-21.12.2020

Impact on forecasts

Locations of actively assimilated surface observations

Summary

- . Successful assimilation of T2m and RH2m
- . Improves thermodynamical structure of nearsurface atmosphere
- . Improves fog and low stratus in stable situations Impact into forecast time lasts up to ± 24 h
- . Impact into forecast time lasts up to +24h

Outlook

- Introduce in operations during fall/winter
- Investigate summer period

Cloudiness as observed by satellite (right) and analysed by KENDA-1 (middle and right)

CRPS decrease (%) against ALL TEMP in domain and PAYerne

Physics-constrained deep learning for post-processing of surface temperature and humidity

A simple experiment to demonstrate how we can prescribe specific physical processes in our Deep Learning models, thus ensuring the **physical consistency** of the output while integrating **meteorological expertise**.

Unconstrained approach

. Neural Network (NN) predicts target variables directly

Problem: violations of physics are possible, e.g., if the NN model predicts $T < T_d$

Constrained approach

Results

Experiment: local post-processing of a station in Magadino (MAG)

hourly observations from 2015 to 2020

- . Inspired by framework from Beucler et al. (2021)
- . Optimizable NN predicts subset of variables
- Remaining variables are derived from analytical (thermodynamic) equations, implemented as an additional custom layer of the NN model
- Optimization based on all five variables, such that relationships between them are strictly respected while reducing the error for all of them simultaneously.

No violation of physics.

Comparable performance (Mean Absolute Error), with added value of physical consistency.

Violations in independent test set predictions:

- . Constrained: 0.0 %
- . Unconstrained: 2.5%
- NWP: 0.0 %

References:

₽ ₹	Beucler,	T., Pritchard, M., Ra	asp, S., Ott, J.	., Baldi, P., & C	Gentine, P. (20	21). Enforcing An	alytic Constraints	in Neural Net	works Emulati	ing Physical S	ystems. <i>Ph</i> y	sical Review Letters, 126(9), 098302. https://doi.org/10.1103/PhysRevLett.126.098302 Contact: francesco.zanetta@meteoswiss.ch	-C-
			5				。 ひ む	- -	Ŷ	÷	公 4	「Further information: www.meteoswiss.ch 公 子 そ 子 子 子 子 子 子 子 子 子 子 子 子 子 子 子 子 子	53
÷				C		_			57	유 유		Contact: Philippe.Steiner@meteoswiss.ch CH-8058 Zurich-Airport, Switzerland 🗘 🖓 🖓	÷ ÷
£-	5	IVIE	ren	SW	155	-C-	-C-	승습				승수 승수 승수 승수 승수 승수 승수 승수 승수 수수 수수 수수 수수 수	
	÷						} 4	5	5 6		상순	수 수 수 수 수 수 수 수 수 수 수 수 수	-C-
		÷ ÷	₽°°	$\bigcirc \bigcirc \bigcirc$	÷	÷			÷	÷		승승승 승승 승 승 승 승 승 승 승 승 승 승 승 승 승 승 승 승	÷ ÷
		•수수 수수		£		÷ ÷ 4	} & &					· · · · · · · · · · · · · · · · · · ·	-C-
$\bigcirc \bigcirc $	슈슈슈	슈슈슈	÷ ÷:		÷ ÷:			6 66	÷	÷ ÷÷		······································	