

EnVar developments with OOPS at Météo-France

Loïk Berre, with main contributions from Valérie Vogt, Pierre Brousseau, Etienne Arbogast

EWGLAM/SRNWP meeting, 29 September 2021

- Reminder about OOPS
- AROME 3DEnVar (LAM)
- AROME 4DEnVar (LAM)
- ARPEGE 4DEnVar (GLOBAL)
- Conclusions

OOPS : Object-Oriented Programing System

<u>Next major evolution of the MF DA systems : towards EnVar schemes</u>

Using OOPS :

- project started in 2009 at ECMWF, in collaboration with Météo-France and LAM partners.
- renovation of common data assimilation codes, in order to enable the development of new algorithms and ease maintenance.
- object-oriented design, upper level code in C++.
- important refactoring of the IFS-Arpege-LAM FORTRAN codes.
- main part of the coding effort now completed.
- precursor of the JEDI project at JCSDA (US) also used now at MetOffice.

AROME 3DEnVar with OOPS : experimental setup

3DEnVar is being experimented, in order to specify flow-dependent **B** for AROME :

- Same resolution as operational configuration (1.3 km).
- Use 50 ensemble members from AROME EDA (3.2 km).
- Horizontal localisation scale varying between 25km at low levels and 150km near the model top.
- Vertical localisation scale = 0.3.
- Pure 3DEnVar version (no hybridation in the next slides).

(V. Vogt and P. Brousseau)

Testing 3DEnVar for AROME with OOPS (vs 3D-Var) : obs-guess & scores over 27 days

Domaine FRANGP (27 cas)

Synthesis of score differences

Testing 3DEnVar for AROME with OOPS (vs 3D-Var) : obs-guess & scores over 27 cases

METEO FRANCE

Ref= analysis(ECMWF)

Ref = radiosondes

AROME 4DEnVar with OOPS

- 4DEnVar : 1h cycle with 5 timeslots : 3*15min + 2*7min
 => use 4D increment (e.g. 4D-IAU).
- 4D perturbations provided by AROME EDA : resolution of 3.2 km

- 3D-Var with 3h DA cycling

- same observations as in deterministic AROME (but less dense thinning and lower time frequency)

(P. Brousseau)

AROME 4DEnVar : case study 26/05/2018

AROME 4DEnVar : experimental results

Testing AROME 4DEnVar with OOPS over case studies,

with radars, ground based GNSS & SEVIRI every 15 minutes : positive impact.

Experimentation has started over long periods,

with same settings & same observations as in 3DEnVar experiments.

Usage of 4D increment :

Synthesis of scores : 4DEnVar vs 3DEnVar (47 cases)

			TEMPs					FCMWE			
		Réf.						analysis		SYNOPs	
		Grille								EURW1S40	
		Éch.	0H à 48H pas de 12H				1	0H à 48H pas de 6H		0H à 48H pas de 6H	
		100hPa		=	=	=	=	▲ = = = ▲	= =		
Geopotential		500hPa	=	=		=	=	▲ = = = =	: 🛛 🔻 =		
		850hPa		=	٠	=	=	▲ ▲ = = =	:= 🛛 =		
		1000hPa	=		=	=	=	▲ = 🛛 = =			
MSLP		Mer								A A A = =	=
Temperature		100hPa			=	=	=	A A A A	= = :		
		500hPa	•	=	=	=	=	▲ = = = =	v 🛛 =		
		850hPa	=	=	=	=	=	= 🛛 = 🖉 =	: 🛛 = :		
T2m		1000hPa		=	=	=	=	= 🔺 📗 🗮 =	: v v :		
		2m								▼ 🛛 = 🔺 =	= = =
Wind		250hPa	•	=	=	=		= = = = =	: 🛛 = 🛛		
		500hPa	•	=	=	=	=	▲ = = = =	:==:		
		850hPa	=	=			=	A A A = =	:==:		
10m wind		10m								▲ = ▲ 🗏 =	= = =
		400hPa	•	=	=	=	=	▲ ▲ = = =	:==:		
Humidity		700hPa	=	=	=	=		A A A = =	= = :		
		850hPa	=	=	=	=	=	A A A =	:==:		
	2m								▼ = = ▲ 🐰	= = 🛛 🕅	

4D-IAU (progressive addition of 5 increments over 1h window) gives the best results.

4D-hybrid formulation of 4DEnVar for ARPEGE

3D-hybrid 4DEnVar : $\mathbf{\underline{B}} = w_e \, \mathbf{\underline{X}}^{b^{\intercal}} \, \mathbf{\underline{X}}^{b^{\intercal}} \, \mathbf{O} \, \mathbf{\underline{L}} + w_m \, \mathbf{\underline{I}} \, \mathbf{B}_0 \, \mathbf{\underline{I}}^{\intercal}$ (hybrid with static \mathbf{B}_0) 4D-hybrid 4DEnVar : $\mathbf{\underline{B}} = w_e \, \mathbf{\underline{X}}^{b^{\intercal}} \, \mathbf{\underline{X}}^{b^{\intercal}} \, \mathbf{O} \, \mathbf{\underline{L}} + w_m \, \mathbf{\underline{M}} \, \mathbf{B}_0 \, \mathbf{\underline{M}}^{\intercal}$ (hybrid with linearly propagated \mathbf{B}_0)

can be seen as a unifying framework :

- $w_e=0$: equivalent to 4D-Var;
- w_e =1 : non-hybrid 4DEnVar ;

w_e=0.5 : 4D-hybrid 4DEnVar (intermediate approach).

Allows « a smooth transition » from current 4D-Var towards 4DEnVar,

+ combination of features of the two 4D covariance models :

° High resolution non linear processes are represented by the 4D ensemble.

[°] Flow-dependent large scale components are represented through linearly evolved <u>MB₀M^T</u>.

 $\underline{\mathbf{M}}\mathbf{B}_{0}\underline{\mathbf{M}}^{\mathsf{T}}$ can be computed at lower resolution than the high resolution increments produced by the 4D ensemble.

(L. Berre and E. Arbogast)

Experimental setup for the global ARPEGE system

- 4D-hybrid formulation of 4DEnVar implemented for ARPEGE, thanks to flexibility of OOPS framework.
- Comparison between "4D-hybrid 4DEnVar" and "4D-Var" over 1 month.
 All conventional and satellite observations are assimilated.
- Minimization at truncation T499, with operational TL/AD model, followed by HR non linear trajectory update and DFI (at T1798 c2.2).
- ARPEGE EDA provides ensemble information from 50 members at truncation T499;
 B₀ is the operational flow-dependent wavelet matrix (Berre et al 2015).
- Setting of covariance weights in the 4D-hybrid version of 4DEnVar : $w_m = w_e = 0.5$ in the troposphere and low stratosphere (up to 150 hPa) ; $w_m = 1$ -w_e is increased from 0.5, at 150 hPa, to 1 at 25 hPa and above (high stratosphere).
- Relatively short localisation scales (~200 km) have been applied ; localisation is advected (Desroziers et al 2018) and applied to transformed variables for ln(Ps) and wind (Berre et al 2017).

«4D-hybrid 4DEnVar» vs «4D-Var» (ARPEGE, with OOPS) : results over 30 days

Conclusions

- Development and testing AROME 3DEnVar with OOPS is well advanced, with positive results, and is thus considered for double E-suite in 2022.
- Development of AROME 4DEnVar is also progressing well thanks to OOPS, with encouraging results, to be pursued with high frequency observations (15 min), for possible double E-suite in 2023.
- A new 4D hybrid formulation is proposed for ARPEGE 4DEnVar with OOPS, to combine high resolution ensemble with linearly propagated large scale covariances, with positive results compared to 4D-Var, leading 4DEnVar to be considered for double E-suite in 2022.
- OOPS will also allow new approaches to be considered :

hydrometeors & NH variables in the control variable,

better trajectory handling, observation error correlations, ...

Thanks for listening !

