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Outline

• COSMO (Runge-Kutta): no further developments in dyn. core

• Transition to ICON in the consortium:

DWD has switched off COSMO completely; ICON-D2 since Feb. 2021.

Many COSMO partners run ICON pre-operationally, too.

• COSMO-EULAG: developed by and running operationally at IMGW, Poland

• ICON

• Almost no further developments in the current dyn. core during last year
COSMO Tech. Report No. 44: ‚Comparison of the dynamical cores of ICON and COSMO‘

(available soon on COSMO web page)

• Discontinuous Galerkin-discretisation for ICON

• Further work on the 2D toy model

• BRIDGE: a 3D ICON-prototype



Tytuł prezentacji z tutaj

COSMO-EULAG publication

An article „Compressible EULAG dynamical core in COSMO: convective-scale Alpine weather
forecasts” by M. Ziemiański, D. Wójcik, B. Rosa, and Z. Piotrowski was accepted for 
publication in Monthly Weather Review (August 2021)

• it contains : 

o description of the semi-implicit compressible EULAG dynamical core

o discussion of the coupling of EULAG dynamical core with the COSMO computational
and physical framework (version 5.05 was used)

o comparison of standard verification statistics for 2.2 km COSMO-Runge-Kutta (CRK) and 
COSMO-EULAG (CE) for warm and colder season over Alpine domain

o verification case-study for representation of summer convective clouds with CRK at 2.2 
km grid and CE at 2.2, 1.1, and 0.55km grid

o demonstration of the CE forecast of Alpine convection at 0.22 and 0.1 km grid

• it demonstrates the competitive CE verification scores and realism and robustness of its
Alpine forecasts at O(100 m) horizontal grid with slopes reaching 85 deg. 

M. Ziemiański
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CRK and CE vertical velocity over the Alps

Vertical velocity 
(m/s) over the 
Rhone valley 
(Bietschhorn on 
the left, Weiss-
horn on the right) 
at 1230 UTC of 19 
July 2013 for 
horizontal grids 
between 2.2 and 
0.1 km and 
different turbu-
lence schemes 

(TKE or Smago-
rinsky)
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Properties of the dynamical core of ICON

 uses non-hydrostatic, compressible Euler eqns.

 exactly mass- and tracer mass-conserving.

 It is a true 2nd order scheme (as long as  

parameterizations are switched off).

 stable in very steep mountainous regions.

 useable both for global and regional applications.

 computationally very efficient and scales well on current parallel comp.
(Zängl et al. (2015) QJRMS, Zängl (2012) MWR)

Some numerical details:

• staggering: horizontal: icosahedral, triangle C-grid, vertical: Lorenz-grid

• mixed finite-volume / finite-difference

• predictor-corrector time-integration

• several damping mechanisms are used (divergence damping (2D and quasi-3D), off-

centering in the vertically implicit solver, artificial horizontal diffusion…)



 

Discontinuous Galerkin (DG) methods in a nutshell (I)

From Nair et al. (2011) in 

‚Numerical techniques for global atm.

models'

1.) weak formulation

2.) Finite-element ingredient
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e.g.

Cockburn, Shu (1989) Math. Comput.

Cockburn et al. (1989) JCP

Hesthaven, Warburton (2008)

Galerkin-idea: identify v  pl

Modal base: orthogonal functions e.g. Legendre-Polynomials

Nodal base: interpolation (Lagrange) polynomials





 

Discontinuous Galerkin (DG) methods in a nutshell (II)

3.) Finite-volume ingredient:

Replace physical flux by a numerical flux in the surface integral  

 couple two neighbouring cells

 ODE-system for q(k)

Often used: simple Lax-Friedrichs flux
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4.) Gaussian quadrature for the volume and surface integrals

Weak formulation

5.) Use a time-integration scheme (Runge-Kutta, …)
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Step 1: 

bring DG on the sphere …



 

In a FV scheme, one only has to transform the fluxes 

between neighboring unit triangles by
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annoying: the sphere doesn‘t allow a single coordinate system without singularities 

Straightforward approach to avoid this (for any 2D manifold!)
1. generate a triangulation for an arbitrary set of points on the manifold and by connecting them

a) by geodetic lines (=great circle arcs on the sphere)         curved triangles

b) and by straight lines in the embedding Euclidean space  flat triangles  unit triangles

2. map every unit triangle (with local coordinates x1, x2) to the related curved triangle;

this can be done exactly (and without any ‚holes‘ or overlappings) for the

• sphere:   by gnomonial projection (e.g. Läuter, Giraldo, … (2008) JCP) 

• ellipsoid: by gnomonial + affine projection

 all geometric properties (gij, 
i
jk, ...) are treated exactly.

 higher order discretizations are straightforward.

How to construct a higher order numerical scheme on the sphere 

This is simplified by using the covariant form of the equations ...
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Shallow-water equations in covariant form, i.e. only tensors occur

 equations are valid on any 2D manifold (at least from a mathematical viewpoint)

express covariant derviative j 

by partial derivative and Christoffel symbols

 accessible to a numerical implementation:

Ejl : 2nd rank Levi-Civita pseudo tensor, 

fc : Coriolis parameter (a pseudo scalar field)

momentum flux tensor:

source vector of momentum: 

Some basics on manifolds

Baldauf, M. (2020): Discontinuous Galerkin solver for the shallow-water equations in covariant form on 

the sphere and the ellipsoid, J. Comp. Phys. 410
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Unsteady solid body rotation

Läuter et al. (2005) JCP

Exact analytic solution available!   calculate error measures L2 (=RMSE)

Convergence plot: Work-precision diagram:

dx (in m) CPU wall clock time (in sec.)

DG: combine polynomials of degree n-1 with n-th order Runge-Kutta scheme

n=2

n=3

n=4

n=5

n=2

n=3

n=4

n=5

True solution is very smooth 

higher order scheme wins



 

simple triangle grid 

on the sphere

dx ~ 500km:

4th order DG scheme

without additional diffusion

dx~67 km, dt=15 sec.

Barotropic instability test 

Galewsky et al. (2004)
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Barotropic instability test 

Galewsky et al. (2004)

FMS-SWM (Geophys. Fl. Dyn. Lab.)

without additional diffusion

dx~60 km (T341), dt=30 sec.

Fig. 4 from Galewsky et al. (2004)

4th order DG scheme

without additional diffusion

dx~67 km, dt=15 sec.

relative vorticity
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Comparison between the sphere and the ellipsoid

solid line: sphere 
R = 6371.22 km

dashed line: ellipsoid
a = 6378.137 km

c = 6356.752 km

 numer. excentr. = 0.082

Barotropic instability test 

Galewsky et al. (2004)

 ellipsoidal solution shows westward phase shift of ~1° after 6 days

 is in qualitative agreement with Bénard (2015) QJRMS

relative vorticity
isolines for 4  10-5 1/s

4th order DG scheme

without additional diffusion

dx~67 km, dt=15 sec.
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Step 2: 

extension for the Euler equations in terrain-following coordinates

and a HEVI time integration
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Extension to the 3D Euler equations on the sphere together with

terrain-following coordinates

Additional metric terms of terrain-following coordinates can destroy 

numerical local conservation  use strong conservation form of the equations,

i.e. use both base vectors for a smooth (e.g. spherical) coordinate system K‘

and for the terrain-following system K.

example: strong cons. form of the momentum equation:

now: additional metric terms only from the smooth system K‘

for diffusion (Dik = deformation tensor), addmomentum flux for Euler eqns.

Additionally: Continuity eq. (for ) and energy equation (for )
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Horizontally explicit - vertically implicit (HEVI)-scheme with DG

References:

Giraldo et al. (2010) SIAM JSC: propose a HEVI semi-implicit scheme

Bao, Klöfkorn, Nair (2015) MWR: use of an iterative solver for HEVI-DG

Blaise et al. (2016) IJNMF: use of IMEX-RK schemes in HEVI-DG

Abdi et al. (2019) IJHighPerfCompAppl: use of multi-step or multi-stage IMEX for HEVI-DG

explicit implicit explicit implicit

Motivation: get rid of the strong time step restriction by vertical sound wave

expansion in flat grid cells  (in particular near the ground)

• Use of IMEX-Runge-Kutta (SDIRK) schemes: SSP3(3,3,2), SSP3(4,3,3)

(Pareschi, Russo (2005) JSC)

• The implicit part leads to several block-tridiagonal matrices 

 here a direct solver is used (expensive!)
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DG 2D toy model: semi-realistic case study

Setup: 

U0= 10 m/s, N=0.01 1/s

2D cross section over the Alps 

(Monte Rosa region) using 

orography data on a 0.05° mesh

DG HEVI scheme 4th order, 

Smagorinsky model, no surface friction

x=4 km;   vertical grid stretching: zmin~46m, zmax~736m, zlowest QP~10.3m
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Additionally done

• Treatment of diffusion in a HEVI-DG scheme with terrain-following

coordinates (by the Bassi, Rebay approach)

• Efficiency improvement of the implicit solver

(perform expensive LU-decomposition only after several dozen time steps)

• Formulation of boundary conditions for higher order schemes

• Method for consistent use of real orography

Baldauf, M. (2021): A horizontally explicit, vertically implicit (HEVI) discontinuous

Galerkin scheme for the 2-dim. Euler and Navier-Stokes equations using 

terrain-following coordinates, J. Comp. Phys. 446
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The BRIDGE project (Basic Research for ICON with DG Extension) 

started ~mid 2020

currently: F. Prill, M. Baldauf / joining later: D. Reinert, U. Schättler, S. Borchert, …

Goals: 
• develop a prototype for a DG implementation of the 3D Euler equations

(‚DG-HEVI on the sphere‘)

• together with a minimal set of physical parameterizations (turbulence, micro physics)

• using ICON infrastructure (parallelisation, I/O, ...) 

• more object-orientation and use of standard software (e.g. YAC coupler (DKRZ/MPI-M), 

YAXT parallel communication (DKRZ), …

as an intermediate step to a full–fledged ICON implementation

Milestones:
• Shallow-water equations on the sphere ready in Q3/2021

• 3D explicit Euler solver ready in Q4/2021

• 3D HEVI Euler solver ready in Q1/2022  decision about prolongation of the project

• Implementation into ICON (start ~2024)
• choose optimal approx. order (currently I favor: phoriz =4, pvert =4, ptime =3) and grid spacing

• Operationally useable version might be ready ~2028
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More object orientation with the BRIDGE code

Helps in keeping things as transparent as possible

Example: quadrature classes for the numerical integration 

over prism volumes or prism faces 

UML diagrams of all quadrature classes:

(F. Prill)

Integration over plane triangles Integration 

over 

lateral faces

Integration 

over prism

volume
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First preliminary results of the BRIDGE code:

2.) Barotropic instability test on the sphere

(Galewsky et al., 2004)

H(t=6d)-H(t=0)

1st order 2nd order 4th order

1.) Advection by a solid body rotation wind field after 100 time steps (t=50 s)
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Summary for the DG development

• Basic questions are solved for (by the 2D toy model)

• DG on the sphere on a triangle grid possible by the use of local

coordinates and the covariant formulation of the equations.

• HEVI-DG for Euler equations with terrain-following coordinates and

optionally with 3D diffusion

• With respect to the pure dynamical core (=solver for the Euler equations), no show–

stopper occured until now. However, total efficiency is still an issue! In particular the

vertically implicit solver is still too expensive.

• Further questions must be solved for coupling with parameterizations

(time-integration, positive-definiteness, …)

• All this further work is done in the BRIDGE project, which is well on the way …

Baldauf, M. (2020): Discontinuous Galerkin solver for the shallow-water equations in covariant form on the sphere and 

the ellipsoid, J. Comp. Phys. 410

Baldauf, M. (2021): A horizontally explicit, vertically implicit (HEVI) Discontinuous Galerkin scheme for the 2-dim. Euler 

and Navier-Stokes equations using terrain-following coordinates, J. Comp. Phys. 446
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Thank you very much for your attention!
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DG – Pros …

• local conservation of every prognostic variable

• any order of approximation (convergence) possible

• flexible application on unstructured grids (also dynamic adaptation is 

possible, h-/p-adaptivity)

• very good scalability on massively-parallel computers (compact data 

transfer and no extensive halos)

• separation between (analytical) equations and numerical implementation

• boundary conditions are easily prescribed (fluxes or values in weak form)

 coupling with other subcomponents (ocean model, …) should be easy

• higher accuracy helps to avoid several awkward approaches of standard 

2nd order schemes: staggered grids (on triangles/hexagons, vertically heavily 

stretched), numerical hydrostatic balancing, grid imprints by pentagon points 

or along cubed sphere lines, …

• unified numerical treatment of all flux terms and source terms

• explicit schemes are relatively easy to build and are quite well understood
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DG – … and Cons

• high computational costs due to 

• (apparently) small Courant numbers  small time steps

• higher number of degrees of freedom 

• variables ‚live‘ both on interior and on edge quadrature points

• this holds additionally for parabolic problems (diffusion)

• HEVI approach leads to block tridiagonal matrices with larger blocks

• well-balancing (hydrostatic, perhaps also geostrophic?) in Euler equations 

is an issue  can be solved!

• basically ‚only‘ an A-grid-method however, the ‚spurious pressure mode‘ 

is very selectively damped!

 All these expenses must be outperformed by:

higher convergence order, better computational intensity, and better parallelization!


