A fast converging and concise algorithm for computing the departure points in semi-Lagrangian weather and climate models

EWGLAM workshop 2021 29/09/21

Michail Diamantakis and Filip Vana

ECMWF, Shinfield Park, Reading RG2 9AX, UK.

michail.diamantakis@ecmwf.int

Motivation for this work

- IFS semi-Lagrangian advection: trace backwards parcel trajectories from grid-points to find their departure points (DP) and interpolate advected fields to these DPs
 - Accurate with long time-steps -> Efficient
 - Multi-tracer efficient (but non conserving)
- SETTLS (Hortal, 2001 QJRMS) is an iterative method to find DPs:
 - 1. Current implementation in spherical coordinates is complicated!
 - Usual near pole curvature issues, rotate wind vectors to account for curvature
 - Solve in addition 3 nonlinear equations/grid point to find lat-lon of the DP
 - Some approximations needed to avoid division by 0
 - Not "friendly" for single-precision: keep the inversion procedure in double precision
 - 2. IFS long time-steps -> iterative method SETTLS converges slowly
- New SETTLS for CY48R1 implemented fully on geocentric Cartesian system:
 - simplifies code greatly, better suited for single-precision, avoids pole problems
 - Faster convergence (~ 40%) of DP calculation

Computing the departure points in IFS: SETTLS

SETTLS (Hortal, QJRMS 2002): 2nd order Taylor expansion of an arrival (grid) point position vector function at its departure point (DP)

Stable Extrapolation Two Time Level Scheme

$$\left(\frac{Dr}{Dt}\right)_{d}^{t} = V_{d}\left(t\right), \quad \left(\frac{D^{2}r}{Dt^{2}}\right)_{AV} = \left(\frac{DV}{Dt}\right)_{AV} \approx \frac{V_{a}(t) - V_{d}(t - \Delta t)}{\Delta t}$$

Hence,

$$r_a(t + \Delta t) \approx r_d(t) + \frac{\Delta t}{2} \cdot \left(V_a(t) + \left\{ 2V(t) - V(t - \Delta t) \right\}_d \right)$$

Therefore DP can be computed by iterative sequence:

$$\begin{aligned} r_d^{(0)} &= r_a - \Delta t V\left(r_a, t\right) \\ r_d^{(k)} &= r_a - \frac{\Delta t}{2} \cdot \left(V_a(t) + \left\{ 2V(t) - V(t - \Delta t) \right\} \Big|_{r_d^{(k-1)}} \right) \quad k = 1, 2, \dots K \\ & \swarrow \\ & \swarrow \\ & Interpolate \text{ at } r_d^{(k-1)} \text{ In the IFS: K=5} \end{aligned}$$

 $r_a(t + \Delta t) = r_d(t) + \Delta t \cdot \left(\frac{Dr}{Dt}\right)_1^t + \frac{\Delta t^2}{2} \cdot \left(\frac{D^2 r}{Dt^2}\right)$ AV: average value along SL trajectory

- Convergence of iterative scheme must satisfy Lipschitz condition $\Delta t \left| \partial V / \partial r \right| < 1$
- Implementation on the sphere results in a more complex algorithm

On the sphere: compute DP lat/lon [from Temperton et al, QJRMS 2001]

We use the fact that ϕ is small to approximate $\sin \phi$ and $\cos \phi$, thereby avoiding a potential division by zero:

$$\sin \phi \approx \phi \left(1 - \frac{1}{6} \phi^2 \right) = |\mathbf{v}_{\mathrm{M}}| \frac{\Delta t}{a} \left(1 - \frac{1}{6} \phi^2 \right),$$
$$\cos \phi \approx 1 - \frac{1}{2} \phi^2.$$

Thus the iterative scheme becomes:

$$\mathbf{r}_{\mathrm{M}}^{(k+1)} = \mathbf{r}_{\mathrm{A}} \{1 - \frac{1}{2} (\phi^{(k)})^2\} - \Re(\mathbf{v}_{\mathrm{M}}^{(k)}) \Delta t \{1 - \frac{1}{6} (\phi^{(k)})^2\}.$$

Defining $(u', v')^T = \Re(\mathbf{v}_{\mathrm{M}}^{(k)})$ and resolving in Cartesian (x, y, z) coordinates, we obtain:

$$\sin \theta_{\rm M}^{(k+1)} = \sin \theta_{\rm A} \left\{ 1 - \frac{1}{2} (\phi^{(k)})^2 \right\} - v' \frac{\Delta t}{a} \cos \theta_{\rm A} \left\{ 1 - \frac{1}{6} (\phi^{(k)})^2 \right\},$$

$$\cos \theta_{\rm M}^{(k+1)} \cos(\lambda_{\rm M}^{(k+1)} - \lambda_{\rm A}) = \cos \theta_{\rm A} \left\{ 1 - \frac{1}{2} (\phi^{(k)})^2 \right\} + \frac{v' \Delta t}{a} \sin \theta_{\rm A} \left\{ 1 - \frac{1}{6} (\phi^{(k)})^2 \right\},$$

$$\cos \theta_{\rm M}^{(k+1)} \sin(\lambda_{\rm M}^{(k+1)} - \lambda_{\rm A}) = \frac{-u' \Delta t}{a} \left\{ 1 - \frac{1}{6} (\phi^{(k)})^2 \right\}.$$

$$\sin \theta_{\rm D} = \sin \theta_{\rm A} \cos 2\phi - 2 \cos \phi \frac{v' \Delta t}{a} \cos \theta_{\rm A} \left(1 - \frac{1}{6}\phi^2\right),$$

$$\cos \theta_{\rm D} \cos(\lambda_{\rm D} - \lambda_{\rm A}) = \cos \theta_{\rm A} \cos 2\phi + 2 \cos \phi \frac{v' \Delta t}{a} \sin \theta_{\rm A} \left(1 - \frac{1}{6}\phi^2\right),$$

$$\cos \theta_{\rm D} \sin(\lambda_{\rm D} - \lambda_{\rm A}) = -2 \cos \phi \frac{u' \Delta t}{a} \left(1 - \frac{1}{6}\phi^2\right),$$

- Estimate angle φ between DP and gridpoint position vector
- Approximate sinq, cosq

- Iterate nonlinear products
- At each iteration apply rotation matrix $\Re(\mathbf{v}_{M}^{(k)})$

(iterative equations copied from the Temperton et al paper and refer to old mid-point iterative scheme but very similar for SETTLS)

After iterations invert at each gridpoint a system of 3 nonlinear equations to obtain the lat/lon of the DP θ_D , λ_D

SETTLS iterations on the sphere using a geocentric Cartesian system

- Introduce Cartesian geocentric coordinates XYZ as in Ritchie MWR87 and project $(u, v) \rightarrow (U, V, W)$

 $\begin{array}{ll} X_{j} = a \cos \theta_{j} \cos \lambda_{j}, & U_{j} = -u_{j} \sin \lambda_{j} - v_{j} \sin \theta_{j} \cos \lambda_{j} \\ Y_{j} = a \cos \theta_{j} \sin \lambda_{j}, & \Longrightarrow & V_{j} = u_{j} \cos \lambda_{j} - v_{j} \sin \lambda_{j} \sin \theta_{j} \\ Z_{j} = a \sin \theta_{j}, & W_{j} = v_{j} \cos \theta_{j} \end{array} \begin{array}{l} \textbf{\eta} \text{: pressure based terrain} \\ \textbf{following vertical coord} \end{array}$

- SETTLS on sphere iterations for DP d using XYZn coords:

$$\ell = 1, 2, ... X_{d}^{(\ell)} = X_{j} - \frac{\Delta t}{2} \left[U_{j}^{t} + (2U^{t} - U^{t - \Delta t})_{d^{(\ell-1)}} \right] Y_{d}^{(\ell)} = Y_{j} - \frac{\Delta t}{2} \left[V_{j}^{t} + (2V^{t} - V^{t - \Delta t})_{d^{(\ell-1)}} \right] With Z_{d}^{(\ell)} = Z_{j} - \frac{\Delta t}{2} \left[W_{j}^{t} + (2W^{t} - W^{t - \Delta t})_{d^{(\ell-1)}} \right] \eta_{d}^{(\ell)} = \eta_{j} - \frac{\Delta t}{2} \left[\dot{\eta}_{j}^{t} + (2\dot{\eta}^{t} - \dot{\eta}^{t - \Delta t})_{d^{(\ell-1)}} \right] \lambda_{d}^{(\ell)} = \operatorname{ATAN2}(Y_{d}^{(\ell)}, X_{d}^{(\ell)}) \theta_{d}^{(\ell)} = \operatorname{arcsin} \frac{Z_{d}^{(\ell)}}{\sqrt{X_{d}^{(\ell)^{2}} + Y_{d}^{(\ell)^{2}} + Z_{d}^{(\ell)^{2}}}}$$

$$X_d^{(0)} = X_j - \Delta t U_j^t$$
$$Y_d^{(0)} = Y_j - \Delta t V_j^t$$
$$Z_d^{(0)} = Z_j - \Delta t W_j^t$$
$$\eta_d^{(0)} = \eta_j - \Delta t \dot{\eta}_i^t.$$

Start iterations with 1st order scheme

- Updating λ_d , θ_d greatly simplified
- No approximations
- No rotation matrix
- All calculations in single precision
- Avoids pole issues
- Very compact code
- Extra linear interpolation for W but interpolation weight available (fast)

More compact code: fewer subroutines + fewer lines of code

Converging the DP iterations is important for forecast accuracy

- DP iterations converge slowly in IFS: • rate depends on the deformational (Lipschitz) Courant number
- Lack of sufficient convergence: skill degradation and TC performance degradation (see Diamantakis & Magnusson MWR 2016)
- From CY41R2: 5 iterations are used compared with 3 in previous cycles

Evolution of timestep/grid spacing in IFS history ...

Horizontal Res	Vertical levs	tstep (s)	$\Delta t / \Delta x$
TL399 (50km)	91	1200	0.02
TL511 (40km)	91	900	0.02
TL1279 (16km)	91	600	0.04
Tco1279 (9km)	137	450	0.05

geopotential ACC reduction with 3 versus 5 iterations

ed anomaly correlatior

New SETTLS algorithm with faster convergence (saves 2 iterations/step)

– Pre-compute X_j, Y_j, Z_j at each grid-point j

– At each time-step, obtain U_j, V_j, W_j from u_j, v_j

 ${\bf if}~({\rm step~count}>0)~{\bf then}$

Initialize the horizontal components of the DP from the previous time-step:

$$\begin{split} \lambda_d^{(0)} &= \lambda_d^{(K)} \big|_{t - \Delta t}, \quad \theta_d^{(0)} = \theta_d^{(K)} \big|_{t - \Delta t} \\ \text{if } (\dot{\eta}_j^t \cdot \dot{\eta}_j^{t - \Delta t} \ge 0) \text{ then } \\ \eta_d^{(0)} &= \eta_d^{(K)} \big|_{t - \Delta t} \\ \text{else } \\ \eta_d^{(0)} &= \eta_j - \Delta t \dot{\eta}_j^t \\ \text{end if} \end{split}$$
 New starting values procedure:
• Use previous timestep DP to start iterations
• BUT: when vertical wind direction changes in two consecutive steps then don't trust the old value to start iterations, better switch to 1st order Euler predictor

else

```
compute starting values for the DP iterations using (13)-(16) end if
```

for $\ell = 1, ..., K$ do

- Interpolate $U, V, W, \dot{\eta}$ to available estimate for the DP $d^{(\ell-1)}$
- Compute X_d , Y_d , Z_d , η_d DP :

```
- Compute corresponding \lambda_d, \theta_d
```

end for

Save DP $d^{(K)} \equiv (\lambda_{d^{(K)}}, \theta_{d^{(K)}}, \eta_{d^{(K)}})$ to be used as a predictor at next time step DP iterations

Validation of new faster SETTLS against oper forecast at 9km

Convergence diagnostics from typhoon Neoguri case

 Δn

 $\Delta \eta$

CECMWF

Faster convergence • of new algorithm

- New predictor gives • better starting values
- Has converged by 3rd • iteration

TC case from MWR2016, Diamantakis & Magnusson

New predictor

EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

Combined winter/summer Tco1279 scores for Z, VW, T (4 months)

Combined winter/summer Tco399 4DVAR forecast scores (8 months)

Z-ACC: above 0 better

VW-RMSE: below 0 better

T-RMSE: below 0 better

EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

Tropical cyclones and computational performance in single precision (SP)

North Hemisphere tropical cyclone 2020 season (9km resolution verification against Best Track obs) New scheme in SP versus operational in double-precision: 2 × fast model but same accuracy! ©

Global non-hydrostatic testing at 2.5km resolution

- IFS has non-hydrostatic version (member states a key contributor)
- Global IFS NH dynamics are more than 2 x expensive:
 - More equations and variables and spectral transforms (very expensive at high resolution)
 - ICI (predictor-corrector) scheme for stability: call dynamics twice / step •
- The new SETTLS has been tested successfully in the NH with ICI scheme: the predictor-corrector approach is exploited to converge it fast

500 hPa KE spectra from 3 NH versions at 2.5km res with 137 lev, 120s timestep:

- **RED** vertical finite difference discretization oper version of SETTLS
- BLUE new vertical finite element (Vivoda, Smolikova, Simarro MWR 2018)
- BLACK = BLUE + new SETTLS

Summary

 A Cartesian implementation of SETTLS is proposed for 48r1 for its efficiency, compactness, advantages for single precision and near pole calculations

• It includes a new starting procedure for the departure point iterative scheme with faster convergence

• Faster cleaner code with same accuracy

Future work:

I hope that this work may stimulate future efforts to improve SL parallel communication and development of STOCHDP (stochastic advection scheme led by S-J Lock)

Work currently under review in QJRMS: "A fast converging and concise algorithm for computing the departure points in semi-Lagrangian weather and climate models"

Thank you for your attention!