Software for ensemble post-processing on extremes using the SRNWP-EPS database

AEMet srnwpeps_calibration@aemet.es

44th EWGLAM - 29th SRNWP Workshop (26th - 29th September 2022)

Outline

- Introduction
- SRNWP-EPS calibration software
 - Main features
 - Structure
- Results
 - Daily maximum wind gust: IT-EPS MFAromeEPS
 - Daily precipitation: IREPS COMEPS
- Conclusions
- Future / ongoing work

Introduction

EUMETNET SRNWP-EPS project

Short Range Numerical Weather Prediction Ensemble Prediction System (2019-2023)

• Application task: LAM-EPS calibration focused on extremes

Development of EPS post-processing software to calibrate different extreme variables

SRNWP-EPS calibration software – main features

Development of EPS post-processing software to calibrate different extreme variables

Main features

- Local ensemble post-processing (point) software (e.g. airports, ensemble meteograms).
- Run in ECMWF computer facilities (Reading and Bologna).
- Broad application: prepared to be used on different LAM-EPS (SRNWP-EPS database), grib editions, weather variables...
- Different EPS point selection (nearest point, maximum and mean circle 13 nearest points to observation). Orography and land-sea filter.
- Weather variables: daily precipitation, maximum wind gust and maximum and minimum temperature.
- Allow comparing the performance between different post-processing methods (parametric and non-parametric) and raw ensemble (non post-processed EPS).
- Comparison between LAM-EPS and ECMWF ensemble (overlapping area).
- Software developed in Python and R programming language (Conda environment).
- All parts have a main script that allows them to be launched independently (i.e. only the post-processing part).
- An extensive user guide will be available to properly execute the software and with the recommendations of the most appropriate post-processing methods for each variable.

SRNWP-EPS calibration software – structure

main_run

Results

Daily maximum wind gust

IT-EPS – MFAromeEPS Monte Cimone max – circle nearest 13 points

Daily accumulated precipitation

IREPS – COMEPS Paris mean – circle nearest 13 points

Data

Observations: MARS archive EPS: SRNWP-EPS database

Time period

01/06/2020 - 31/07/2022*

*MFAromeEPS until 31/12/2021

Abbeville, Barcelona, Biarritz, Bordeaux, Capo Caccia, Gurteen, Llanes, Monte Cimone, Madrid, Montpellier, Northolt, Palma de Mallorca, Paris, Puerto de San Isidro, Santiago de Compostela, Toulouse

Daily maximum wind gust

Parametric post-processing models

tNGR: truncated Nonhomogeneous Gaussian Regression
tNLR: truncated Nonhomogeneous Logistic Regression
gamma: gamma distribution
RGU: Reverse Gumbel model (GEV type I)
BMA: Bayesian Model Averaging mixture with normal distribution

gBMA: Bayesian Model Averaging mixture with gamma distribution

EMOS_trunc: truncated normal EMOS modeling EMOS_log: log-normal EMOS modeling

Non-parametric post-processing models

QRF: Quantile Regression Forest: ensemble mean QRF_qq: ensemble mean + 10th and 90th quantile QRF_sd: ensemble mean + ensemble std ORF sd month: ensemble mean + ens std + month

QRF_sd: Quantile Regression Forest (ensemble mean + ensemble standard deviation)

Continuous Rank Probability Score, MonteCimone, max

Brier Score (th = 25 m/s), MonteCimone, max

Daily accumulated precipitation

Parametric post-processing models

cNLR: censored Nonhomogeneous Logistic Regression **gamma0**: zero adjusted Gamma distribution

gBMA0: Bayesian Model Averaging mixture with gamma0 distribution

EMOS_csg0: censored and shifted gamma EMOS modeling

EMOS_gev0: censored generalized extreme value distribution EMOS modeling

Non-parametric post-processing models QRF: Quantile Regression Forest: ensemble mean QRF_qq: ensemble mean + 10th and 90th quantile QRF_sd: ensemble mean + ensemble std QRF_sd_month: ensemble mean + ens std + month

Continuous Ranked Probability Skill Score, Paris, mean

EMOS_gev0: censored generalized extreme value distribution EMOS modeling

QRF: Quantile Regression Forest (ensemble mean)

QRF_qq: Quantile Regression Forest (ensemble mean + 10th and 90th quantile)

QRF sd: Quantile Regression Forest (ensemble mean + ensemble standard deviation)

Reference = raw ensemble

IREPS

Continuous Rank Probability Score, Paris, mean

Quantile Score (q = 0.95), Paris, mean

Conclusions

- A post-processing software to calibrate different extreme variables is being developed within the EUMETNET SRNWP-EPS project.
- The software has been tested on 5 different EPS of the SRNWP-EPS database.
- It allows the comparison of the the performance of different post-processing methods and LAM-EPS.
- Results show that postprocessed EPS usually outperform raw ensembles.
- EMOS and BMA methodology with different distributions shows good performance for the bulk of the distribution as well as for the tail.
- QRF methods usually outperform raw ensembles, however, can not easily extrapolate beyond data (e.g. extremes) and are highly sample-size depending.
- Mixture models (e.g. QRF + GEV) could provide better calibrate EPS for the whole distribution.

Future / ongoing work

- Implement new methodologies (e.g. mixture models).
- Test the software using other observation stations and LAM-EPS.
 - Request: 3 synoptic stations for each country to test these methods and compare the performance of the LAM-EPS of the database.
- Finish developing the software and make it available for the EUMETNET SRNWP-EPS project.
- Publish results in a scientific journal.

THANK YOU VERY MUCH FOR YOUR ATTENTION!

Maria Cortès Simó

srnwpeps_calibration@aemet.es

