

EnVar in OOPS for ACCORD

Loïk Berre, with main contributions from Valérie Vogt, Pierre Brousseau, Maud Martet, Etienne Arbogast (Météo-France), Benedikt Strajnar (ARSO), Florian Meier (ZAMG), Roel Stappers (MetNo)

EWGLAM/SRNWP meeting, 29 September 2022

- Reminder about OOPS
- First experiments with 3D-Var and 3DEnVar in OOPS
- Pre-operational 3DEnVar at Météo-France with OOPS
- Further developments : 4DEnVar ; hydrometeors & reflectivities
- Conclusions

OOPS : Object-Oriented Programing System

Next major evolution of DA systems, e.g. at Météo-France : towards EnVar schemes

Using OOPS :

- project started in 2009 at ECMWF, in collaboration with Météo-France and LAM partners.
- renovation of common data assimilation codes, in order to enable the development of new algorithms and ease maintenance.
- object-oriented design, upper level code in C++.
- important refactoring of the IFS-Arpege-LAM FORTRAN codes.
- main part of the coding effort now completed.
- precursor of the JEDI project at JCSDA (US) also used now at MetOffice.

Experiments to reproduce 3D-Var with OOPS have been achieved successfully by several ACCORD members :

V. Vogt (Météo-France), B. Strajnar (ARSO), R. Stappers (MetNo), F. Meier (ZAMG), ...

Analysis increments of temperature at level 80 (PBL)

Screening and minimisation are now run within a single OOPS task, in order to easen handling of variational bias correction (VarBC) of obs.

AROME-France 3DEnVar with OOPS : illustration of flow-dependent covariances

AROME-Austria 3DEnVar with OOPS : effects of flow-dependent covariances

Analysis increments of temperature at 850 hPa

(F. Meier, ZAMG)

Harmonie-AROME 3DEnVar with OOPS : effects of flow-dependent covariances

3D-Var

Analysis increments (in color) for specific humidity near 800 hPa, superimposed with the background field (in gray) (over North Europe)

3DEnVar

(R. Stappers, MetNo)

Pre-operational AROME 3DEnVar at Météo-France with OOPS : experimental setup

3DEnVar is being experimented at Météo-France (preparation of double suite), in order to specify flow-dependent **B** for Arome:

- Same resolution as operational configuration (1.3 km).
- Use 50 ensemble members from AROME EDA (3.2 km).
- Horizontal localisation scale varying between 25km at low levels and 150km near the model top.
- Vertical localisation scale = 0.3.
- Pure 3DEnVar version (no hybridation in the next slides).

(V. Vogt and P. Brousseau)

Pre-operational AROME 3DEnVar at Météo-France with OOPS : impact results

simulation of HPE (8 cases)

(V. Vogt and P. Brousseau)

AROME 3DEnVar : case study 19/09/2020

AROME 4DEnVar with OOPS

- 4DEnVar : 1h cycle with 5 timeslots : 3*15min + 2*7min
 => use 4D increment (e.g. 4D-IAU).
- 4D perturbations provided by AROME EDA.

(P. Brousseau)

AROME 4DEnVar with OOPS

- 1-month experiment using same observations as in 3DEnVar : neutral / slightly positive impacts.
- Use of 15 minute observations :

radar, surface stations, SEVIRI, ground-based GNSS : nb obs x 3 encouraging results on cases studies ; first long experiments are ongoing.

(P. Brousseau)

Direct assimilation of reflectivities, with hydrometeors in the control variable

- Ground based radar reflectivities are currently assimilated in AROME with a 1D+3DVar method, using Bayesian inversion to produce pseudo-observations of relative humidity.
- With hydrometeors in the control variable of OOPS-3DEnVar, it is possible to assimilate radar reflectivities directly.
- TL/AD versions of radar reflectivity operator have been developped.
- We can compare both assimilation methods in AROME 3DEnVar experiments.

(M. Martet)

Direct assimilation of reflectivities, with hydrometeors in the control variable (3DEnVar)

⁽M. Martet)

Direct assimilation of reflectivities, with hydrometeors in the control variable (3DEnVar)

- One example : 6-hour precipitation forecast on 19/09/2020
- Better position and intensity using direct assimilation of reflectivity although some underestimation remains in this case.

(M. Martet)

Conclusions

- Setup and validation of OOPS/3D-Var has been achieved by several ACCORD members, which will easen research, development and maintenance of DA algorithms.
- AROME 3DEnVar with OOPS is well advanced, e.g. with positive results over a 6 month period ; a real-time double E-suite will start in 2023 at Météo-France to achieve operational implementation.
- Development of AROME 4DEnVar is also progressing well thanks to OOPS, with encouraging results, which are pursued with high frequency observations (15 min), for possible double E-suite in 2024.
- OOPS also allows new approaches to be considered :

hydrometeors in the control variable and direct assimilation of reflectivities, NH variables in the control variable, scale dependent localisation (SDL), ...

Thanks for listening !

