

Neighborhood pooling for evaluating ensemble forecasts of binary events with the Brier Divergence

J. Stein and F. Stoop DirOP/COMPAS Météo-France EWGLAM 27/09/2022

- Interest of the neighborhood
- Neighborhood pooling, Brier Divergence and its decomposition
- Comparison of probabilistic and deterministic QPF
- Conclusions

RÉPUBLIQUE FRANÇAISE Liberté Égationité

Classical Tables of contingency

Reward forecasts of events spatially slightly misplaced

Classical Tables of contingency

Fraction Brier Score=> FSS (Roberts and Lean 2008) and BSS (Amodei and Stein 2009)

METEO FRANCE

- Interest of the neighborhood
- Neighborhood pooling, Brier Divergence and its decomposition
- Comparison of probabilistic and deterministic QPF
- Conclusions

BS classical method

METEO FRANCE

BS classical method

BS classical method

Neighborhood pooling and Brier divergence

Neighborhood pooling and Brier divergence

Neighborhood pooling and Brier divergence

Decomposition of the Brier divergence

M disjoint arbitrary intervals spanning [0,1] for fn, as in Stephenson etal 2008

$$\overline{dn_{B}} = \frac{1}{n} \sum_{k=1}^{M} \sum_{j=1}^{n_{k}} (fn_{j} - on_{j})^{2} = UNC + REL - GRES$$

$$UNC = \overline{on^{2}} - (\overline{on})^{2}$$

$$REL = \frac{1}{n} \sum_{k=1}^{M} n_{k} (\overline{fn_{k}} - \overline{on_{k}})^{2}$$

$$GRES = RES - WBV + WBC$$

$$RES = \frac{1}{n} \sum_{k=1}^{M} n_{k} (\overline{on_{k}} - \overline{on})^{2}$$

$$WBV = \frac{1}{n} \sum_{k=1}^{M} \sum_{j=1}^{n_{k}} (fn_{j} - \overline{fn_{k}})^{2}$$

$$WBC = \frac{1}{n} \sum_{k=1}^{M} \sum_{j=1}^{n_{k}} (fn_{j} - \overline{fn_{k}})(on_{j} - \overline{on_{k}})$$

$$\overline{dns_{B}} = 1 - \frac{\overline{dn_{B}}}{UNC} = \frac{GRES}{UNC} - \frac{REL}{UNC}$$

- Interest of the neighborhood
- Neighborhood pooling, Brier Divergence and its decomposition
- Comparison of probabilistic and deterministic QPF
- Conclusions

- PEARP : 35 hydrostatic global forecasts ; 7,5 km over France ; Singular vectors + EDA and 10 physics
- PEAROME : 16 non-hydrostatic forecasts nested in PEARP ; 2,5 km over France ; EDA and stochastic physics
- AROME : non-hydrostatic LAM nested in ARPEGE ; 1.3 km over France
- ANTILOPE : data fusion between french radar observations and raingaujes ; 1 km grid over France
- Verification of QPF accumulated during 6 hours on the same grid (2,5 km) : from 01 january to 31 december 2020 over France

Comparison with dns_B of PEAROME and PEARP for the event rr6 > 0,5 mm/6H

RÉPUBLIQUE FRANCAISE

Liberté Égalité Fraternit

Comparison with dns_B of PEAROME and PEARP for the event rr6 > 5 mm/6H

RÉPUBLIQUE FRANCAISE

Liberté Égalité Fraternit

Comparison with dns_B of PEAROME and AROME for the event rr6 > 5 mm/6H

RÉPUBLIQUE FRANCAISE

Liberté Égalité Fraternit

- Generalization of the FBS for the ensemble forecasts by a two steps procedure : 1) pooling in the neighborhood 2) use of the Brier divergence for neighborhood frequencies
- Deterministic limit using an ensemble of one member.
- The double penalty is still present for ensemble forecasts but less active than for a deterministic forecast.
- Stein and Stoop (2022) submitted to Monthly Weather Review

