NWP activities at ARSO (Slovenia)

Neva Pristov, Benedikt Strajnar, Jure Cedilnik, Peter Smerkol, Matjaž Ličar, Vito Švagelj, Jure Jerman, Matjaž Ličer, Anja Fettich

ARSO METEO Slovenian Environment Agency

September 2022

Operational suite (ALADIN-SI)

Model characteristics:

- code version cy43t2 bf10, ALARO-v1B physics,
- 4.4 km horizontal resolution, 87 vertical levels, 432 x 432 horizontal grid points,
- 180 s time step,
- coupling with ECMWF (6h lag), 1h (assim. cycle) / 3h (forecast),
- space-consistent LBC at initial time,
- production runs to 72 h (every 6 h), 4 runs to 36 h. Data assimilation:
- 3h 3D-Var for atmosphere, OI for soil,
- static downscaled ensemble B-matrix,
- observations (mostly from the OPLACE system): SYNOP, AMV, HR-AMV, TEMP, AMSU&MHS, SEVIRI, IASI, ASCAT, OSCAT, Mode-S MRAR SI/CZ, MUAC EHS, ZTD (passive).

Model system SEEMHEWS

One of the NWP models within the South-East European Multi-Hazard Early Warning Advisory System project:

- runs at ECMWF infrastructure (cca/ccb),
- same model version and assimilation setup as in operational ALADIN-SI,
- 2.5 km horizontal resolution, 87 vertical levels, 1429 x 1141 horizontal grid points,
- 90 s time step, non-hydrostatic,
- coupling with ECMWF, 1h (assim. cycle) / 3h (forecast),
- observations from OPLACE preprocessing system, additional regional observations available and tested.

Operational ALARO 4.4 km/87L model domain.

Model domain of SEEMHEWS 2.5 km/87L model domain, run daily at ECMWF HPC.

HOOF tool

A new version of the Homogenization Of OPERA Files (HOOF2) now implements additional functionalities:

- Homogenization of radar OPERA hdf5 data,
- Radial wind dealiasing using the torus mapping method,
- creation of super observations.

The Python-based system is flexible and namelist-driven and now also includes a GUI to easily check and plot the contents of output radar files.

Superobservations create flexible super observations add related QC flag create and outprint new geometry (hdf5)

Validation of wind dealiasing

- Dealiasing method from HOOF evaluated over year 2021:
- Inter comparison of collocated observations: aircraft, radiosondes,
- Comparison of (passive) first guess departures.
- "Radial winds" computed for aircraft, sondes,
- Low NI radars in the ALARO-SI domain: Switzerland, Croatia, Slovenia,
- Dealiasing introduced tails in difference distributions, 15 m/s background rejection limit reduces this,
- Improvements to dealiasing procedure implemented to limit unsuccessful fits.

RUC validation: poststamp visualisation plot to investigate the ability to simulate convective activity in progress (first two rows) and model consistency from run to run (differences in each column).

ALARO-RUC for nowcasting

Pre-operational setup:

- code version cy43t2_bf10, ALARO-v1B physics,
- 1.3 km horizontal resolution, 87 vertical levels, 589 x 589 horizontal grid points,
- domain centered in the North Adriatic Sea
- 60 s time step,
- coupling with ECMWF (lag 6h to 12h), every hour,
- space-consistent LBC at initial time,
- cutoff times:
 - assimilation: 70 min after nominal time,
 - production: 35 mins after nominal time,
- 36h forecasts every hour,
- upper-air DA: 1h 3D-Var, static ENS DSC B matrix,
- all observation as in operational + radar,
- output every 5 min, plots and movies available for subjective validation.

Severe convection associated with advancing cold front in the N-Adriatic. Left: RUC lagged ensemble (only isolines of 45 dBz simulated reflectivity and above are shown) with rainbow color determining lead time (violet shortest, red longest). Right: observed radar reflectivity.

HPC system at ARSO

Technical characteristics (SGI ICE X):

- 205 Intel Sandy Bridge compute nodes (3280 cores, E5-2670 @ 2.6 GHz) - each with 64 GB of memory,
- 11 Intel Broadwell compute nodes (308 cores),
- two Infiniband FDR networks,
- 500 TB of disk space (HA NFS),

Pre-operational 1.3 km/87L ALARO-RUC model domain.

500 TB of disk space (HA NFS),

300TB CEPH file system (new),

robot tape libraries.

Distribution of differences for various observations. Left: for all low NI radars. Right: only 2 Slovenian radars, lower tails indicate less noise in data.

Rain rates from microlinks - new preprocessing

- rain rate observations from attenuation of microwave signals,
- 3 months of transmitted/received power data (1700 links on 15min intervals),
- attenuation expressed by Mie scattering calculations (Hergert et al.),
- main challenge: determining the baseline attenuation A B - independent of rain rate. Baseline determined by factor graph algorithm (Loeliger et al., Reller et al.). Processing of time series of attenuation data implemented in Python and C++.

Snowpack modeling with SURFEX/Crocus

- Daily runs of the SURFEX land surface platform using the Crocus snowpack model are run on several domains. The system is run in offline mode with prescribed atmospheric forcing:
- 1km INCA-SI domain: 24h analysis with INCA-SI forcing, forecast +68h ALARO-4.4km forcing
- 1km INCA-AT domain: 24h analysis with INCA-AT forcing, forecasts +56h with AROME-AT forcing
- 4km domain: 24h analysis with INCA-AT forcing, forecast +236h with ECMWF forcing

Ocean modeling

The operational ocean system includes the following components:

- NEMO ocean circulation model
- WAM wave model
- ensemble of NEMO used for storm surge
- ocean particle tracking (OpenDrift).

Software:

- OS: SGI ProPack on top of Suse Enterprise Server,
- 1api intel 21 compiler suite, openMPI 4.05,
- Open PBS job queueing system,
- EcFlow suite management.

Example for one data link. Top: wet (blue),dry (red) points, calculated baseline (black line). Middle: rain rate (blue), measuring station (black). Bottom: ROC curve.

snowpack model

