Development of a 4DVAR Data Assimilation System for the JMA Nonhydrostatic Model – JNOVA –

<u>Yuki Honda¹</u>, T. Kawabata², K. Tamiya², K. Aonashi², T. Tsuyuki², and K. Koizumi¹

Numerical Prediction Division, JMA
 Forecast Research Department, MRI

Oct. 28, 2003 Fifth International SRNWP Workshop on Nonhydrostatic Modelling

Motivation

- The JMA nonhydrostatic model (NHM) is planed to be run as a operational forecast model in the near future.
 - 2003- : run as a mesoscale model
 - domain: Japan, resolution: 10km40L
 - 2006- : run as a regional model
 - domain: Asia, resolution: 5km50L
- A data assimilation system specified for NHM is requested to complete the forecast/analysis system.
- Researchers also require an appropriate method to analyze mesoscale phenomena.

Oct. 28, 2003 Fifth International SRNWP Workshop on Nonhydrostatic Modelling

JNoVA Project (since April, 2002)

JMA Nonhydrostatic model-based
Variational data Assimilation system

Collaboration between two sides:
 operational side : Numerical Prediction Division
 research side : Meteorological Research Institute

JNoVA has two analysis models.

- 3DVAR (*JNoVA*0)
 - for aviation use / for real-time analysis
- 4DVAR for daily operational forecast

General Frame of Current 4DVAR

Forward Model
 JMANHM(rel-01-02 version) with full physics
 Version of current JMANHM is rel-01-08.

Backward Model Adjoint model of simplified JMANHM(rel-01-02)

Minimization method: L-BFGS method

Preconditioning: $\delta \mathbf{v} = \left(\sqrt{\mathbf{B}}\right)^{-1/2} \delta \mathbf{x}$

No penalty term, so far

Oct. 28, 2003 Fifth International SRNWP Workshop on Nonhydrostatic Modelling

2

Specification of Simplified JMANHM(rel-01-02)

CATEGORY	Tangent Linear / Adjoint Model
Basic Equation	Fully Compressible Elastic Equation
Vertical Coordinate	Terrain-following Coordinate, z*
Horizontal Coordinate	Conformal Projection(Lambert /Polar Stereo/Mercator)
Grid Setting	[Horizontal] Arakawa-C , [Vertical] Lorentz
Coriolis Effect	without / vertical comp. / 3
Advection Scheme	2nd or 4th flux scheme
Modified Advection Scheme	with / without flux correction
Dynamic Core	HE-VI method
Numerical Diffusion	4th order and nonlinear diffusion
Turbulent Closure	Deardorff TKE 1.5 order closure model
Surface Layer	(land) Monin-Obkhov Theory + Sommeria / (sea)Kondo
Lateral Boundary	Periodical / Nesting w/o buffer area / Orlanski radiation condition
Lower Boundary	free slip / non-slip / given temp calculated by 4-layer soil model
Upper Boundary	free slip with rigid rid + buffer area using rayleigh friction

Oct. 28, 2003

Fifth International SRNWP Workshop on Nonhydrostatic Modelling

Code Check of TLM/ADM

Code Check of Tangent Linear Model $\frac{\|F(x+\alpha \mathbf{d}) - F(x)\|}{\|\mathbf{F}(\alpha \mathbf{d})\|} - 1 = O(\alpha)$ $\frac{\langle F(x+\alpha \mathbf{d}) - F(x) \rangle, \mathbf{F}(\mathbf{d})}{\|F(x+\alpha \mathbf{d}) - F(x)\|\|\mathbf{F}(\mathbf{d})\|} - 1 = O(\alpha^2)$

Code Check of Adjoint Model

$$\langle \mathbf{F}(x), \mathbf{F}(x) \rangle = \langle x, \mathbf{F}^* \mathbf{F}(x) \rangle$$

Code Check of Gradient

of Cost Function in X-Space and U-Space $\frac{J(x + \alpha \mathbf{d}) - J(x)}{\langle \alpha \mathbf{d}, \nabla J(x) \rangle} - 1 = O(\alpha)$

Encountered Problems During Code Check

Deardorff TKE 1.5 Turbulent Closure Model

- This scheme is highly nonlinear
- Prevent the code from passing the TLM code check
- Omit the variance of the following variable:

Mixing Length Scale: *I l_∞* = Δ*s* for N_l ≤ 0 *l_∞* = min(Δ*s*, E^{1/2}, N_l⁻¹) for N_l > 0
Eddy Diffusion Coefficients are functions of *I K_m* = C_m*l*E^{1/2}, *K_e* = 2*K_m*, *K_h* = P_r⁻¹*K_m*Ignore δI => Ignore δ*K_i* too

The variance of TKE is taken into consideration.
But it isn't one of control variables.

Preliminary Experiment Accuracy of Basic Fields

Why? Because ADM needs the basic fields.

Problem : Requirement of huge size of memory / storage!!!

Current System :

almost (nx * ny * nz * 28) x (time steps)

Example: nx = ny = 150, nz = 40, time steps = 360 Memory size is about 71G Bytes!!!

How can we reduce this size of memory?
 Reduction of the precision : Double => Single
 No update of the basic fields for the small time step
 Save the fields every several time steps

Preliminary Experiment Accuracy of Basic Fields

- Test Case: Mar. 01, 2003. 06UTC
- Model Resolution: (H) 10km, (V) 300-1180m
- Grid Size: 32x32x32
- Initial field: Mesoscale analysis by 4DVAR based on hydrostatic model

Give the white noise and forecast for 30mins.
 Compare the structure of the perturbation
 Spatial Correlation

Preliminary Experiment Accuracy of Basic Fields

Spatial Correlation

Control Variables

Two sets: Treatment of horizontal wind is different

- Set A: JMA's MSM4DVAR-like U, V
- Set B: MM5-4DVAR-like Ψ , χ
- Considered balance
 - Hydrostatic balance

$$\frac{\partial \pi}{\partial z} = -\frac{g}{c_p} \theta^{-1} \qquad \Longrightarrow \qquad (\Delta \Theta, \Delta P_{\rm S}) \Rightarrow \Delta P_{\rm B}$$

Geostrophic balance

Oct. 28, 2003

$$f\vec{k} \times \vec{v} = -\nabla p$$

$$\Delta P_{\rm B} \Rightarrow (\Delta U_{\rm B}, \Delta V_{\rm B})$$

Balance by mass continuity

$$\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} + \frac{\partial w}{\partial z} = 0 \implies (\Delta U, \Delta V) \Rightarrow \Delta W_{\rm B}$$
Fifth International SRNWP Workshop on Nonhydrostatic Modelling 11

Control Variables

Set A (Miyoshi, 2003)

- Pro
 - Same to control variables for hydrostatic 4DVAR
 - Might be useful in the case of very fine analysis
- Con

VERY WEAK to the noise in pressure

Real Case Experiment

Sep. 29, 2003. 00UTC Resolution and Grid ■ (H) 5km, 48x 24 ■ (V) 40-900m, 45L Data Assimilation Window: 10mins **Observation Data:** Wind profiler at 2 Points Injected at the end of data assimilation window

138.9E

139.2E

Real Case Experiment: First Guess

Real Case Experiment: Increment

- This System works fine as 3DVAR! (Not Shown)
- In this experiment, the cost didn't decrease after several iterations of minimization...
- The System works odd as 4DVAR...
- Are there still any bugs in our code ?
 Or is this the character of this system ?

Needs more investigations... Oct. 28, 2003 Fifth International SRNWP Workshop on Nonhydrostatic Modelling 17

Ideal Experiment Thermal Bubble

ولاودة ددددة ددر

45 50 55

4'n.

15 20 25 30 35

HALLELLER ANTSTREET

- Predicted Variables as Control Variables
- Give Complete Wind Data at Every Time Step
- Try to Recover Temperature

Summary and Future Plan

- Construct Basic Frame of 4DVAR System
- Need to Do More Experiments and Refine the System
- Understand the Behavior of the System
- Modify and Test the Code to Run the System on the Parallel Computer
- Include the Moist Process
 - Cloud Microphysics
 - Cumulus Convective Parameterization

THANK YOU FOR YOUR ATTENTION!!!

Oct. 28, 2003

Fifth International SRNWP Workshop on Nonhydrostatic Modelling