# Examination of the impact of mixing-length formulation on mesoscale simulation results

A Lokal-Modell case study

Jürgen Helmert

Leibniz-Institute for Tropospheric Research, Leipzig

Fifth International SRNWP-Workshop on Non-Hydrostatic Modelling Bad Orb, 27-29 October 2003

## **Overview**

- Introduction
- Turbulence length-scales derived from large-eddy simulation
- Mesoscale response to mixing-length formulation
- Conclusions and outlook

#### Boundary layer turbulence

Coherent structures in convective boundary layers



. . . . . . .

#### **Turbulence closure**

Parameterisation of turbulent fluxes



. . . . . . .

#### Turbulence closure – Mellor-Yamada approach

- Aim: K-Parameterisation in dependence on atmospheric stability state<sup>1</sup>
- Requirements:
  - Specification of a characteristic velocity scale  $e^{1/2}$
  - Specification of a characteristic mixing length scale l

$$K \sim l e^{1/2}$$

#### Turbulence closure – Mellor-Yamada approach

- Aim: K-Parameterisation in dependence on atmospheric stability state<sup>1</sup>
- Requirements:
  - Specification of a characteristic velocity scale  $e^{1/2}$
  - Specification of a characteristic mixing length scale l

$$K \sim le^{1/2}$$

• Specification of the characteristic velocity scale by a prognostic TKE-equation:

$$\frac{\partial \overline{e}}{\partial t} = \dots$$

• Specification of the characteristic mixing length scale by a prognostic equation is difficult!

<sup>&</sup>lt;sup>1</sup>Mellor and Yamada, 1974; Mellor and Yamada, 1982

#### Turbulence closure – Specification of the mixing length

• Master length scale approach<sup>1</sup>: neutral boundary layer<sup>2</sup>



#### Characteristic turbulence length scales





spectral peak wavelength

$$\Phi_w(\lambda) = \frac{1}{(2\pi)^3} \int_{-\infty}^{\infty} e^{-i\lambda \cdot \mathbf{r}} w(\mathbf{r}) d\mathbf{r}$$
$$E_w(\lambda) = \int_{-\infty}^{\infty} \frac{1}{2} \|\Phi_w(\lambda)\|^2 d\lambda$$
$$(\lambda_m)_w = \max \{E_w(\lambda)\}$$

#### Characteristic turbulence length scales

0.01 m

1.0

1.5



spectral peak wavelength

$$\Phi_w(\lambda) = \frac{1}{(2\pi)^3} \int_{-\infty}^{\infty} e^{-i\lambda \cdot \mathbf{r}} w(\mathbf{r}) d\mathbf{r}$$
$$E_w(\lambda) = \int_{-\infty}^{\infty} \frac{1}{2} \|\Phi_w(\lambda)\|^2 d\lambda$$
$$(\lambda_m)_w = \max \{E_w(\lambda)\}$$

integral length scale

$$R_w(\mathbf{r}) = \int_{-\infty}^{\infty} w(\mathbf{x}) w(\mathbf{x} + \mathbf{r}) d\mathbf{x}$$
$$\Lambda_w = \frac{1}{R_w(0)} \int_{0}^{\infty} R_w(r) dr$$

#### Determination of characteristic turbulence length scales

- Large-eddy simulation<sup>1</sup>
  - High-resolution numerical simulation of convective boundary layers
  - Grid space  $\Delta x \sim$  0.1 km —> coherent structures are resolved
  - Modification of boundary layer parameters (wind, temperature, heat flux)
  - Supplement to laboratory experiments and field measurements





<sup>1</sup>e.g. Graf and Schumann, 1991; Khanna and Brasseur, 1998)

#### **Energy spectrum of atmospheric flows**



#### **Energy spectrum of atmospheric flows**



#### LES cases

| Lauf | $-z_i/L$ | $u_*$ [m s <sup>-1</sup> ] | $w_{*}$ [m s <sup>-1</sup> ] | $z_i$ [m] | — <i>L</i><br>[m] | $\overline{u}_g$ [m s <sup>-1</sup> ] | $[g \; k g^{-1}]$ | $\overline{(w'\theta'_v)}_s \\ [K \ m \ s^{-1}]$ |
|------|----------|----------------------------|------------------------------|-----------|-------------------|---------------------------------------|-------------------|--------------------------------------------------|
| А    | 2.12     | 0.82                       | 1.43                         | 1593.30   | 751.00            | 20                                    | 24                | 0.058                                            |
| В    | 5.91     | 0.50                       | 1.23                         | 1026.00   | 173.60            | 10                                    | 24                | 0.058                                            |
| С    | 7.09     | 0.86                       | 2.73                         | 1600.00   | 225.80            | 20                                    | 12                | 0.231                                            |
| D    | 9.16     | 0.73                       | 2.06                         | 1400.00   | 152.80            | 15                                    | 0                 | 0.200                                            |
| Е    | 10.94    | 0.75                       | 2.25                         | 1586.70   | 145.00            | 15                                    | 12                | 0.231                                            |
| F    | 11.41    | 0.74                       | 2.27                         | 1620.00   | 142.00            | 15                                    | 15                | 0.231                                            |
| G    | 11.78    | 0.53                       | 1.65                         | 1246.70   | 105.80            | 10                                    | 24                | 0.115                                            |
| Н    | 17.29    | 0.56                       | 1.98                         | 1426.70   | 82.50             | 10                                    | 24                | 0.173                                            |
| I    | 18.69    | 0.57                       | 2.07                         | 1400.00   | 74.90             | 10                                    | 0                 | 0.200                                            |
| J    | 23.22    | 0.57                       | 2.21                         | 1506.70   | 64.90             | 10                                    | 6                 | 0.231                                            |
| Κ    | 23.65    | 0.58                       | 2.25                         | 1586.70   | 67.10             | 10                                    | 24                | 0.231                                            |
| L    | 24.89    | 0.57                       | 2.24                         | 1573.30   | 63.20             | 10                                    | 12                | 0.231                                            |
| Μ    | 25.29    | 0.58                       | 2.30                         | 1686.70   | 66.70             | 10                                    | 18                | 0.231                                            |
| Ν    | 48.25    | 0.46                       | 2.26                         | 1606.70   | 33.30             | 5                                     | 24                | 0.231                                            |

#### LES cases

| Lauf | $-z_i/L$ | $u_*$ [m s <sup>-1</sup> ] | $w_{*}$ [m s <sup>-1</sup> ] | $z_i$ [m] | — <i>L</i><br>[m] | $\overline{u}_g$ [m s <sup>-1</sup> ] | $[g\ kg^{-1}]$ | $\overline{(w'\theta'_v)}_s \\ [K \ m \ s^{-1}]$ |
|------|----------|----------------------------|------------------------------|-----------|-------------------|---------------------------------------|----------------|--------------------------------------------------|
| Α    | 2.12     | 0.82                       | 1.43                         | 1593.30   | 751.00            | 20                                    | 24             | 0.058                                            |
| В    | 5.91     | 0.50                       | 1.23                         | 1026.00   | 173.60            | 10                                    | 24             | 0.058                                            |
| С    | 7.09     | 0.86                       | 2.73                         | 1600.00   | 225.80            | 20                                    | 12             | 0.231                                            |
| D    | 9.16     | 0.73                       | 2.06                         | 1400.00   | 152.80            | 15                                    | 0              | 0.200                                            |
| Е    | 10.94    | 0.75                       | 2.25                         | 1586.70   | 145.00            | 15                                    | 12             | 0.231                                            |
| F    | 11.41    | 0.74                       | 2.27                         | 1620.00   | 142.00            | 15                                    | 15             | 0.231                                            |
| G    | 11.78    | 0.53                       | 1.65                         | 1246.70   | 105.80            | 10                                    | 24             | 0.115                                            |
| Н    | 17.29    | 0.56                       | 1.98                         | 1426.70   | 82.50             | 10                                    | 24             | 0.173                                            |
| I.   | 18.69    | 0.57                       | 2.07                         | 1400.00   | 74.90             | 10                                    | 0              | 0.200                                            |
| J    | 23.22    | 0.57                       | 2.21                         | 1506.70   | 64.90             | 10                                    | 6              | 0.231                                            |
| K    | 23.65    | 0.58                       | 2.25                         | 1586.70   | 67.10             | 10                                    | 24             | 0.231                                            |
| L    | 24.89    | 0.57                       | 2.24                         | 1573.30   | 63.20             | 10                                    | 12             | 0.231                                            |
| М    | 25.29    | 0.58                       | 2.30                         | 1686.70   | 66.70             | 10                                    | 18             | 0.231                                            |
| Ν    | 48.25    | 0.46                       | 2.26                         | 1606.70   | 33.30             | 5                                     | 24             | 0.231                                            |

#### Determination of characteristic turbulence length scales

- 1D sampling of turbulent fluctuations at horizontal LES model levels
- Computation of 1D- spectra and auto-covariances for x- and y-pathways



#### **Determination of characteristic turbulence length scales**

- 1D sampling of turbulent fluctuations at horizontal LES model levels
- Computation of 1D- spectra and auto-covariances for x- and y-pathways



#### Determination of characteristic turbulence length scales

- 1D sampling of turbulent fluctuations at horizontal LES model levels
- Computation of 1D- spectra and auto-covariances for x- and y-pathways





- Stability-dependent turbulence length scales
- Agreement with laboatory experiments<sup>1</sup>, atmospheric measurements<sup>2</sup>, and further numerical simulations<sup>3</sup>



<sup>1</sup>Wind tunnel exp.: *Kaiser and Fedorovich, 1998* <sup>2</sup> SEMAPHORE: *Durand et al., 2000* 

<sup>3</sup> LES: Graf and Schumann, 1991, Khanna and Brasseur, 1998

Parameterisation of turbulence length scales Integral length scale



Parameterisation of turbulence length scales Integral length scale



Parameterisation of turbulence length scales Integral length scale



#### Implementation of the modified mixing length



1

#### Implementation of the modified mixing length



1

<sup>1</sup>Deutscher Wetterdienst (DWD)

#### Simulation scenario LITFASS

Surface wheater chart 18.06.1998 00:00 UTC Lokal-Modell domain







 $\bullet$   $\bullet$   $\bullet$ 

#### **Direct Comparison of Simulation Results** Statistical Analysis

• Correlation coefficient

$$\varrho_{A,B} = \frac{\frac{1}{N_x N_y} \sum_{i=1}^{N_x} \sum_{j=1}^{N_y} \left(A_{i,j} - \overline{A}\right) \left(B_{i,j} - \overline{B}\right)}{\left\{\frac{1}{N_x N_y} \sum_{i=1}^{N_x} \sum_{j=1}^{N_y} \left(A_{i,j} - \overline{A}\right)^2\right\}^{1/2} \left\{\frac{1}{N_x N_y} \sum_{i=1}^{N_x} \sum_{j=1}^{N_y} \left(B_{i,j} - \overline{B}\right)^2\right\}^{1/2}}$$

• Centered pattern RMS difference (CP-RMS difference)<sup>1</sup>

$$\delta_{A,B}^{\mathsf{CP}} = \left[\frac{1}{N_x N_y} \sum_{i=1}^{N_x} \sum_{j=1}^{N_y} \left\{ (A_{i,j} - \overline{A}) - (B_{i,j} - \overline{B}) \right\}^2 \right]^{1/2}$$

<sup>1</sup>*Taylor*, 2001



**Verification of Simulation Results** 

Brightness temperatures from METEOSAT satellite observations<sup>1</sup>

2 channels:  $T_{IR}$  10.5  $\mu {\rm m}\text{-}12.5~\mu {\rm m}$  and  $T_{WV}$  5.7  $\mu {\rm m}\text{-}7.1~\mu {\rm m}$ 



<sup>1</sup>*Morcrette*, 1991

. . . . . . .

#### **Verification of Simulation Results**

Comparison with 4dVar-analysis data – statistical analysis

| Parameter         | Time  | ₽A,I  | Qa,II | $\frac{\Delta \varrho}{\varrho_{A,I}}$ | $\delta^{\sf CP}_{\sf A,\sf I}$ | $\delta^{\sf CP}_{\sf A,II}$ | $\frac{\Delta \delta^{\text{CP}}}{\delta^{\text{CP}}_{\Lambda \downarrow}}$ |
|-------------------|-------|-------|-------|----------------------------------------|---------------------------------|------------------------------|-----------------------------------------------------------------------------|
|                   | [UTC] |       |       | [·100 %]                               | [Unit of the                    | parameter]                   | [·100 %]                                                                    |
|                   | 06:00 | 0.95  | 0.951 | 0.1                                    | 0.84                            | 0.835                        | -0.616                                                                      |
| $T_{2 m}$         | 12:00 | 0.913 | 0.91  | -0.343                                 | 1.637                           | 1.714                        | 4.7                                                                         |
|                   | 18:00 | 0.955 | 0.954 | -0.158                                 | 1.088                           | 1.106                        | 1.646                                                                       |
|                   | 06:00 | 0.955 | 0.944 | -1.127                                 | 0.864                           | 0.921                        | 6.598                                                                       |
| U <sub>10 m</sub> | 12:00 | 0.857 | 0.829 | -3.363                                 | 1.284                           | 1.376                        | 7.175                                                                       |
|                   | 18:00 | 0.781 | 0.774 | -0.883                                 | 1.367                           | 1.352                        | -1.068                                                                      |
|                   | 06:00 | 0.595 | 0.601 | 1.006                                  | 0.372                           | 0.37                         | -0.6                                                                        |
| CLCH              | 12:00 | 0.443 | 0.423 | -4.479                                 | 0.446                           | 0.455                        | 2.012                                                                       |
|                   | 18:00 | 0.333 | 0.353 | 6.12                                   | 0.418                           | 0.41                         | -1.89                                                                       |
|                   | 06:00 | 0.822 | 0.823 | 0.148                                  | 0.245                           | 0.245                        | -0.32                                                                       |
| CLCM              | 12:00 | 0.705 | 0.7   | -0.82                                  | 0.318                           | 0.319                        | 0.392                                                                       |
|                   | 18:00 | 0.653 | 0.651 | -0.348                                 | 0.342                           | 0.341                        | -0.235                                                                      |
|                   | 06:00 | 0.749 | 0.746 | -0.42                                  | 0.289                           | 0.291                        | 0.491                                                                       |
| CLCL              | 12:00 | 0.629 | 0.698 | 10.88                                  | 0.358                           | 0.319                        | -10.959                                                                     |
|                   | 18:00 | 0.711 | 0.707 | -0.592                                 | 0.315                           | 0.314                        | -0.455                                                                      |

. . . . . . .

**Verification of Simulation Results** 

Comparison with 4dVar-analysis data – 2D fields

Example: cloud fraction of low clouds 18.06.98 12:00 UTC



## Conclusions

- Problems in parameterisation of turbulent transports
- Characteristic turbulence length scales as turbulent mixing length in turbulence closure models
- Three-dimensional large-eddy simulations of convective boundary layers for a wide range of stability states
- Development of an approximation for the vertical profile of integral length scale
- Case study with the Lokal-Modell of the DWD
- Sensitivity of cloud fraction of low clouds on turbulent mixing length

# Outlook

- Large-eddy simulations
  - Further investigations of the moisture and cloud impact on characteristic turbulence length scales
  - Two-dimensional spectra and auto-covariances  $\longrightarrow$  reduced sampling complexity
- Mesoscale Simulations
  - Larger number of synoptic situations
  - Use of further assimilated data in analysis data for verification purposes

#### Acknowledgment

Olaf Hellmuth Andreas Chlond Hans-Joachim Herzog Gerd Vogel Barbara Heide

# Examination of the impact of mixing-length formulation on mesoscale simulation results

A Lokal-Modell case study

Jürgen Helmert

Leibniz-Institute for Tropospheric Research, Leipzig

Fifth International SRNWP-Workshop on Non-Hydrostatic Modelling Bad Orb, 27-29 October 2003