A monotonically damping, second-order accurate, unconditionally stable, numerical scheme for diffusion

Nigel Wood, Michail Diamantakis \&

Andrew Staniforth

Dynamics Research, Met Office, Exeter EX1 3PB

Outline

- Requirements of a new scheme
- Development of scheme - linear case
- The nonlinear case
- Results
- Conclusions

Requirements of a new scheme:

1. Unconditional stability
2. Second-order accuracy
3. Monotonic damping (damping rate increases as diffusion coefficient increases)
4. Maintenance of any steady state

Consider the general diffusion equation:

$$
\frac{\partial F}{\partial t}=\frac{\partial}{\partial x}\left(K \frac{\partial F}{\partial x}\right)
$$

Assume K constant (linear case) and make a Fourier decomposition.

Gives first-order damping equation:

$$
\frac{d F}{d t}=-\beta F
$$

Damping coefficient is $\beta \equiv k^{2} K$.

Consider two-time-level discrete schemes of the form:

$$
\frac{F^{t+\Delta t}-F^{t}}{\Delta t}=-\frac{\beta}{2}\left[(1+\epsilon) F^{t+\Delta t}+(1-\epsilon) F^{t}\right]
$$

Response function is

$$
E \equiv \frac{F^{t+\Delta t}}{F^{t}}=\frac{1-(1-\epsilon) \beta \Delta t / 2}{1+(1+\epsilon) \beta \Delta t / 2}
$$

$\epsilon=-1 \Rightarrow$ explicit scheme;
$\epsilon=0 \Rightarrow$ Crank-Nicolson scheme;
$\epsilon=1 \Rightarrow$ fully implicit scheme.
Here though retain ϵ as arbitrary function (independent of time).

1. Unconditional stability

Requires $|E| \leq 1$ for all Δt.

Holds provided that both:

- $\beta \Delta t \geq 0$
(i.e. physical system is stable)
and
- $\epsilon \geq 0$
(corresponds to requirement of off-centring weights $\geq 1 / 2$).

Requires $E=E_{\text {exact }}+O\left(\Delta t^{3}\right)$ where $E_{\text {exact }}=e^{-\beta \Delta t}$.

Expanding $E_{\text {exact }}$ and E for small $\beta \Delta t$ and $\epsilon \beta \Delta t$, this requires
$1-\beta \Delta t+(1+\epsilon) \frac{(\beta \Delta t)^{2}}{2}+O\left(\Delta t^{3}\right)=1-\beta \Delta t+\frac{(\beta \Delta t)^{2}}{2}+O\left(\Delta t^{3}\right)$
Satisfied if $\epsilon=O(\beta \Delta t)$.
[Trivially satisfied by $\epsilon=0$, consistent with the Crank-Nicolson scheme being second-order accurate.]

3. Monotonic damping

Requires

$$
\frac{\partial|E|^{2}}{\partial \beta}<0
$$

ie:

$$
\left[1-\frac{(\beta \Delta t)}{2}(1-\epsilon)\right]\left[1-\frac{(\beta \Delta t)^{2}}{2} \frac{\partial \epsilon}{\partial(\beta \Delta t)}\right]>0
$$

Choosing

$$
\epsilon=\frac{n \beta \Delta t}{1+n \beta \Delta t}
$$

with $n>1 / 2$ satisfies all three constraints. This gives

$$
\frac{F^{t+\Delta t}-F^{t}}{\Delta t}=-\frac{\beta}{2}\left[\left(1+\frac{n \beta \Delta t}{1+n \beta \Delta t}\right) F^{t+\Delta t}+\left(1-\frac{n \beta \Delta t}{1+n \beta \Delta t}\right) F^{t}\right]
$$

Works because:

- It dynamically keeps the off-centring parameter close to zero for small damping coefficients
- But, as the damping increases, it asymptotes to fully implicit off-centring.
...in general β is an operator!

Can the scheme be written as a multi-step scheme?

Development of the new scheme 2

Response function is

$$
E=\frac{1+\left(n-\frac{1}{2}\right) \beta \Delta t}{1+\left(n+\frac{1}{2}\right) \beta \Delta t+n(\beta \Delta t)^{2}}
$$

Choosing $n \geq \sqrt{2}+3 / 2$ guarantees that $n>1 / 2$ and the denominator can be factorised in real space, and rewritten as

$$
E=\frac{1-(1-a-b) \beta \Delta t}{(1+a \beta \Delta t)(1+b \beta \Delta t)}
$$

where a and b are the two roots of

$$
y^{2}-\left(n+\frac{1}{2}\right) y+n=0 .
$$

Original scheme can then be written as

$$
\begin{gathered}
\frac{F^{*}-F^{t}}{\Delta t}=-a \beta F^{*} \\
\frac{F^{* *}-F^{*}}{\Delta t}=-(1-a-b) \beta F^{*} \\
\frac{F^{t+\Delta t}-F^{* *}}{\Delta t}=-b \beta F^{t+\Delta t}
\end{gathered}
$$

i.e. as an implicit-explicit-implicit multi-step scheme.

As n increases for fixed $\beta \Delta t$, off-centring increases. Therefore choose n as small as permitted, i.e. $n=\sqrt{2}+3 / 2$.

$$
\Rightarrow a=b=1+1 / \sqrt{2} \text { therefore optimising the symmetry. }
$$

Extension to the nonlinear case 1

Extension based on Kalnay \& Kanamitsu (1988)'s generalised damping equation:

$$
\frac{d F}{d t}=-\left(K F^{P}\right) F+S
$$

Result is two semi-implicit steps:

$$
\begin{aligned}
& \frac{X^{*}-X^{t}}{\Delta t}=\mathcal{I}_{1} \frac{\partial}{\partial z}\left[\mathcal{K}\left(X^{t}\right) \frac{\partial X^{*}}{\partial z}\right]-\mathcal{E}_{1} \frac{\partial}{\partial z}\left[\mathcal{K}\left(X^{t}\right) \frac{\partial X^{t}}{\partial z}\right]+\left(\mathcal{I}_{1}-\mathcal{E}_{1}\right) S \\
& \frac{X^{t+\Delta t}-X^{*}}{\Delta t}=\mathcal{I}_{2} \frac{\partial}{\partial z}\left[\mathcal{K}\left(X^{t}\right) \frac{\partial X^{t+\Delta t}}{\partial z}\right]-\mathcal{E}_{2} \frac{\partial}{\partial z}\left[\mathcal{K}\left(X^{t}\right) \frac{\partial X^{*}}{\partial z}\right]+\left(\mathcal{I}_{2}-\mathcal{E}_{2}\right) S
\end{aligned}
$$

Extension to the nonlinear case 2

But! Need to estimate P to evaluate $\mathcal{I}_{1}(P), \mathcal{I}_{2}(P), \mathcal{E}_{1}(P)$ and $\mathcal{E}_{2}(P) \ldots$

Parameter P characterises the nonlinearity of the problem

Empirically: $P \simeq 1 / 4$ for unstable BLs; $P \simeq 2$ for stable BLs

For $P=2: \mathcal{I}_{1}=\mathcal{I}_{2} \simeq 5 ; \mathcal{E}_{1} \simeq 6 ; \mathcal{E}_{2} \simeq 3$
For $P=1 / 4: \mathcal{I}_{1}=\mathcal{I}_{2} \simeq 2 ; \mathcal{E}_{1} \simeq 3 ; \mathcal{E}_{2} \simeq 0$

For details see Wood, Diamantakis \& Staniforth (QJRMS 2007)

Global Unified Model: 40 km at midlatitudes; 70 levels; $\Delta t=15 \mathrm{mins}$.

Almos 4 wind incr: boy layer at 130.0 melres

Boundary-layer zonal wind increments at two successive timesteps

Standard over-weighted scheme ($\epsilon=2$)

Global Unified Model: 40 km at midlatitudes; 70 levels; $\Delta t=15 \mathrm{mins}$.

Boundary-layer zonal wind increments at two successive timesteps

New scheme ($P=1 / 4$ unstable; $P=2$ stable)

Global Unified Model: 40 km at midlatitudes; 70 levels; $\Delta t=15 \mathrm{mins}$.

Standard scheme: physics timestep=15 min, epsilon=2

Timeseries of boundary-layer zonal wind and temperature increments

Standard over-weighted scheme ($\epsilon=2$)

Global Unified Model: 40 km at midlatitudes; 70 levels; $\Delta t=15 \mathrm{mins}$.

New scheme: physics timestep=15 min, $\mathrm{P}=2$

Timeseries of boundary-layer zonal wind and temperature increments

New scheme ($P=1 / 4$ unstable; $P=2$ stable)

- New scheme developed that meets 4 identified criteria
- Extended to nonlinear case
- Diffusion coefficient frozen in time therefore cost is two 1D tri-diagonal solutions - double that of traditional schemes, but much cheaper than substepped schemes
- One free parameter, $P=$ estimate of nonlinearity of diffusion coefficient, depends on stability of boundary layer
- Good accuracy achieved by choosing only one value for unstable and one value for stable boundary layers (e.g. $P_{\text {unstable }}=1 / 4 ; P_{\text {stable }}=2$)

QUESTIONS?

Kalnay \& Kanamitsu (1988) generalised damping equation:

$$
\frac{d F}{d t}=-\left(K F^{P}\right) F+S
$$

Steady state is

$$
F_{0}=\left(\frac{S}{K}\right)^{1 /(P+1)}
$$

Linearise about F_{0} :

$$
\frac{d F^{\prime}}{d t}=-\left(K F_{0}^{P}\right)\left(F^{\prime}+P F^{\prime}\right)
$$

with solution

$$
F^{\prime} \propto e^{-\beta(1+P) t}
$$

where $\beta \equiv K F_{0}^{P}$.

Nonlinear aspects

Consider schemes with diffusion coefficient, $K F^{P}$, evaluated explicitly.

Discrete generalised equation is

$$
\frac{F^{t+\Delta t}-F^{t}}{\Delta t}=-\frac{\beta}{2}\left[(1+\epsilon) F^{t+\Delta t}+(1-\epsilon) F^{t}+2 P F^{t}\right]
$$

with response function

$$
E=\frac{1-\frac{\beta \Delta t}{2}(1-\epsilon+2 P)}{1+\frac{\beta \Delta t}{2}(1+\epsilon)}
$$

Satisfying the requirements

1. Unconditional stability: requires $\epsilon \geq P$
2. Second-order accuracy: requires $\epsilon=P+O(\beta \Delta t)$
3. Monotonic damping: requires

$$
\begin{aligned}
& {\left[1-\frac{\beta \Delta t}{2}(1-\epsilon+2 P)\right] \times} \\
& \quad\left[1+P+\beta \Delta t P(1+\epsilon)-\frac{(\beta \Delta t)^{2}}{2}(1+P) \frac{\partial \epsilon}{\partial \beta \Delta t}\right]>0
\end{aligned}
$$

Development of the nonlinear scheme 1

Choosing

$$
\epsilon=P+(1+P)\left(\frac{n \beta \Delta t}{1+n \beta \Delta t}\right)
$$

with $n>(1+P) / 2$ satisfies all three constraints.

This gives the scheme as

$$
\begin{aligned}
& \frac{F^{t+\Delta t}-F^{t}}{\Delta t} \\
& \quad=-\frac{\beta}{2}(1+P)\left[\left(1+\frac{n \beta \Delta t}{1+n \beta \Delta t}\right) F^{t+\Delta t}+\left(1-\frac{n \beta \Delta t}{1+n \beta \Delta t}\right) F^{t}\right]
\end{aligned}
$$

Note: for $P=0$ (linear case) this reduces to previous scheme.

Development of the nonlinear scheme 2

No longer want to factorise E.
Operating on F by β has the discrete response

$$
\beta F \rightarrow \beta\left(F^{*}+P F^{t}\right)
$$

Therefore need to factorise

$$
E^{*} \equiv \frac{F^{t+\Delta t}+P F^{t}}{F^{t}+P F^{t}}=\frac{E+P}{1+P}
$$

ie

$$
E^{*}=\frac{1+\left(n+\frac{P-1}{2}\right) \beta \Delta t+n P(\beta \Delta t)^{2}}{1+\left(n+\frac{P+1}{2}\right) \beta \Delta t+n(P+1)(\beta \Delta t)^{2}}
$$

Development of the nonlinear scheme 3

Viable scheme requires that E^{*} can be written as

$$
E^{*}=\frac{\left(1+\mathcal{E}_{1} \beta \Delta t\right)\left(1+\mathcal{E}_{2} \beta \Delta t\right)}{\left(1+\mathcal{I}_{1} \beta \Delta t\right)\left(1+\mathcal{I}_{2} \beta \Delta t\right)}
$$

with $\mathcal{E}_{1}, \mathcal{E}_{2}, \mathcal{I}_{1}$ and \mathcal{I}_{2} real.

This can be achieved by requiring that

$$
n \geq\left(\sqrt{2}+\frac{3}{2}\right)(P+1)>\frac{P+1}{2}
$$

Development of the nonlinear scheme 3

Again choose the smallest viable value for n, i.e.

$$
n=(\sqrt{2}+3 / 2)(P+1)
$$

to give

$$
\begin{gathered}
\mathcal{E}_{1}=\left(1+\frac{1}{\sqrt{2}}\right)\left[P+\frac{1}{\sqrt{2}} \pm \sqrt{P(\sqrt{2}-1)+\frac{1}{2}}\right] \\
\mathcal{E}_{2}=\left(1+\frac{1}{\sqrt{2}}\right)\left[P+\frac{1}{\sqrt{2}} \mp \sqrt{P(\sqrt{2}-1)+\frac{1}{2}}\right] \\
\mathcal{I}_{1}=\mathcal{I}_{2}=\left(1+\frac{1}{\sqrt{2}}\right)(1+P)
\end{gathered}
$$

The proposed, full non-linear scheme is therefore

$$
\begin{aligned}
\frac{F^{*}-F^{t}}{\Delta t}= & -\mathcal{I}_{1}\left\{\left[K\left(F^{t}\right)^{P}\right] F^{*}-S\right\} \\
\frac{F^{* *}-F^{*}}{\Delta t} & =\mathcal{E}_{1}\left\{\left[K\left(F^{t}\right)^{P}\right] F^{*}-S\right\} \\
\frac{F^{* * *}-F^{* *}}{\Delta t} & =\mathcal{E}_{2}\left\{\left[K\left(F^{t}\right)^{P}\right] F^{* *}-S\right\} \\
\frac{F^{t+\Delta t}-F^{* * *}}{\Delta t} & =-\mathcal{I}_{2}\left\{\left[K\left(F^{t}\right)^{P}\right] F^{t+\Delta t}-S\right\}
\end{aligned}
$$

Including the source term S this way ensures the scheme retains exact steady state and satisfies fourth requirement.
...and finally...
Reduce scheme to two semi-implicit steps by combining each explicit step with an implicit step:

$$
\begin{aligned}
\frac{F^{*}-F^{t}}{\Delta t} & =-\mathcal{I}_{1}\left[K\left(F^{t}\right)^{P}\right] F^{*}+\mathcal{E}_{1}\left[K\left(F^{t}\right)^{P}\right] F^{t}+\left(\mathcal{I}_{1}-\mathcal{E}_{1}\right) S \\
\frac{F^{t+\Delta t}-F^{*}}{\Delta t} & =-\mathcal{I}_{2}\left[K\left(F^{t}\right)^{P}\right] F^{t+\Delta t}+\mathcal{E}_{2}\left[K\left(F^{t}\right)^{P}\right] F^{*}+\left(\mathcal{I}_{2}-\mathcal{E}_{2}\right) S
\end{aligned}
$$

But! Need to estimate P to evaluate $\mathcal{I}_{1}, \mathcal{I}_{2}, \mathcal{E}_{1}$ and $\mathcal{E}_{2} \ldots$
Actual nonlinearity seems to be in range $0 \leq P \leq 2$.
Choosing $P \approx 3 / 2$ seems to work well.
(a) Actual $\mathrm{P}=1 / 2$

(c) Actual $\mathrm{P}=3 / 2$

(b) Actual $\mathrm{P}=1$

(d) Actual $\mathrm{P}=2$

