Development of the Z-coordinate High-Resolution Non-Hydrostatic Atmospheric Model Using the Shaved Cell Method

7th International SRNWP-Workshop on Non-Hydrostatic Modelling Bad Orb, 5-7 November 2007

Hiroe Yamazaki and Takehiko Satomura Division of Earth and Planetary Sciences, Kyoto University, Japan

Table of Contents

1. Introduction

Early studies and technical issues

2. Model Descriptions Governing equations and the modified shaved cell method

3. Results

Simulations of flow over both gentle and steep slopes

4. Conclusion

1. Introduction

- For high-resolution simulations, steep slopes are represented over complex terrain.
- The commonly used terrain following representation of topography induces large truncation errors over steep slopes (Thompson et al., 1985).

(Satomura, 1989)

- The steeper the slope, the larger the errors T.

$$T \approx \frac{1}{2} \left\{ -x_{\xi\xi} f_{xx} + \left(y_{\eta\eta} f_{yy} - x_{\xi\xi} f_{xy} \right) \underbrace{\cot \theta}_{T \propto \cot \theta} \right\}$$

This errors will be serious in high-resolution simulations.
 → Other representation methods are needed !

box cell method

- Approximating topography fitted to models grids.
 NCEP Eta Model etc.
- Technical issues (Gallus and Klemp, 2000)
 - This method represents topography precisely only when the resolutions are very high.
 - In particular, the step-like representation induces large errors over smooth topography.

→The box cell method cannot reproduce mountain waves precisely.

shaved cell method (Adcroft et al., 1997)

- Model cells are cut by piece wise linear topography.
 - Discretized by the Finite Volume Method
 - Small cells require small Δt .
 - \rightarrow Avoiding extremely small Δt is the key point !

Simulations of flow over a bell-shaped mountain (Steppeler et al., 2002)

→The shaved cell method can precisely reproduce air flow over smooth topography.

Our viewpoint

- Technical issues of Steppeler et al. (2002)
 - 1. Advective form equations are used in spite of the FVM.
 - → Quasi-flux form equations are employed.
 - 2. Using thin-wall approximation to avoid extremely small Δt .
 - → Small cells are combined to upper cells.

Simulations of flow over steep slopes were performed.

2. Model Descriptions

 The fully compressible equations in quasi-flux form are employed. (Satomura and Akiba, 2003)

$$\frac{\partial(\rho u)}{\partial t} + \frac{\partial(\rho u u)}{\partial x} + \frac{\partial(\rho u w)}{\partial z} = -\frac{\partial p'}{\partial x} + DIF(\rho u)$$

$$\frac{\partial(\rho w)}{\partial t} + \frac{\partial(\rho w u)}{\partial x} + \frac{\partial(\rho w w)}{\partial z} = -\frac{\partial p'}{\partial z} - \rho'g + DIF(\rho w)$$

$$\frac{\partial p'}{\partial t} = -\frac{R_d \pi}{1 - R_d / C_p} \left\{ \frac{\partial(\rho \theta u)}{\partial x} + \frac{\partial(\rho \theta w)}{\partial z} + DIF(\rho \theta) \right\}$$

$$\frac{\partial \rho'}{\partial t} + \frac{\partial(\rho u)}{\partial x} + \frac{\partial(\rho w)}{\partial z} = 0$$

- This form does not suffer from the cancellation error due to the subtraction of hydrostatic part (\overline{p} or $\overline{\rho}$) from nearly hydrostatically balanced variable (p or ρ).
- Well suited to the Finite Volume Method in the view of conservation characteristics.

→The combination of the shaved cell method and the quasi-flux form equations is expected to achieve high-resolution and high-precision simulations.

vertical combination of small cells

Model descriptions

Dynamics	
Dimension	2-D
Governing equations	Quasi-Flux Form Fully Compressible Non-Hydrostatic System
Spatial discretization Horizontal cell configuration Vertical cell configuration	Finite Volume Method Arakawa-C type Lorenz type
Topography representation	Vertically Combined Shaved Cell Method
Time integration Temporal scheme	Leap-Frog with Asselin Filter All Explicit
Physics	
Subgrid Turbulence Parametarization	1.5 order (Klemp and Wilhelmson, 1974)

3. Results

- Two-dimensional numerical simulations of flow over a mountain are performed using the developed model.
 - Constant horizontal velocity and the Brunt-Väisälä frequency are specified for each case.

 Case 1 (h=100m, a=5000m, a * N/U=10, t=300min, average slope angle θ= 0.57 deg.)

W (contour interval=0.05m/s)

Normalized Flux

Case 1

(bell-shaped)

 $(\Delta x = 1000 \text{m}, \Delta z = 50 \text{m})$

 Case 2 (a=500m, h=250m, a * N/U=0.25, t=100min, average slope angle θ= 45 deg.)

Normalized Flux W (contour interval=0.5m/s) z*-coordinate ($\Delta x = 50m$, $\Delta z = 250m$) vertically combined shaved cell $(\Delta x = 50m, \Delta z = 250m)$ C

Case 2

(bell-shaped)

Case 3 (radius 1km, t=60min,

Case 3 (semi-circular)

→ The vertically combined shaved cell method can reproduce smooth and accurate mountain waves over gentle as well as steep slopes !

4. Conclusion

- A two-dimensional non-hydrostatic model to simulate air flow over complex terrain including steep slopes was developed.
 - The shaved cell method was implemented.
 - Small cells were combined to upper cells.
 - Quasi-flux form equations were employed.
- Two-dimensional numerical simulations of mountain waves were performed.
 - The vertically combined shaved cell method reproduced smooth and accurate mountain waves over both gentle and steep slopes.
- Future plan
 - speeding up
 - boundary layer
 - physics
 - three-dimensional modelling etc.

Case 1 (bell-shaped)

Case 1 (h=5000m, a=100m, a * l=10, t=300Min)

■ h=500m, a=100m, a * l=1, t=100Min

