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1. Introduction 2. Specifics of the New Dynamical Core
In the last four years the further development of The flow chart outlines an integration step of the COSMO-DE. Highlighted in red, the procedure of 1. Advection of a Decomposed (Reference State + Deviation) Scalar:
the COSMO-model — before Local-model (LM) — the dynamical core is given. In the operational setup a three-step Runge-Kutta scheme P =Py + P*
at the DWD aimed at an expansion of the (irk_order=3) is combined with a 5" order upwind scheme for horizontal advection. The
forecasting system by a model for shortest range integration of the fast waves (box with thicker border) is spilt into several small time steps, while NG | ¢
forecasts over Germany. This model variant keeping the tendencies due to the slow processes fixed. (E) = = (0t = (oo
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called COSMO-DE is operational since April this During the development it came out, that it is better to switch from an equation for the temperature _ s ¢*<">C—mc
year and produces 21 h forecasts every three T to an equation for the temperature perturbation T*, i.e. the deviation from the base state T,, in - C bz )
hours at current resolution of 2.8 km. In particular the dynamical core. This is indicated via the dashed framed boxes in the flow chart. The old +( S u(n)*’<+imﬁ°'¢> 0o
the explicit simulation of deep convection, i.e. no variant will be called p*-T-, the new one p*-T*-Dynamics in the following. Two aspects have to be Saa ? -
parameterization of this process, is the main goal pointed out here, which are apparent in the equations given on the right side. First, the terms in
of COSMO-DE. The developments — mainly an blue (vertical advection) and in green (horizontal advection) cancel analytically. Errors due to - A |
outcome of the so called ‘Aktionsprogramm different discretization in the old p*-T-variant are avoided. Second, the remaining red term is now (aa—if) —— - Cis (p(mn)aw*(“) +coswv(")5¢w*(”)‘°)
2003’ — are the assimilation of quality controlied dealt with in the fast waves solver, leading to a better representation of the gravity waves in this - —*
radar data via the latent heat nudging technique, part.

a new 6-category microphysics parameterization
including graupel and a new non-hydrostatic
dynamical core based on two time levels.

The positive effect of the first point is clearly visible in the test case of the atmosphere at rest over
a hill (see below). Analytically the atmosphere should stay at rest. However during the simulation
significant disturbances develop. The beneficial effects of the second point mainly showed up in

: : : : . . . . 2. New Formulation of the Fast Waves Solver
This poster deals with two main developments in long term runs with the climate version of the COSMO-model, which can not be shown here for
the numerical field. First, specifics of the split- lack of space. | |
explicit integration of the model equations using ® Vertical Velocity
a 39 order Runge-Kutta scheme. Here especially N | Physics| (continued) WD _ 0, | 11 845,50 4 Gg,pt®
the treatment of the prognostic equation for (Coriolis, horizontal [ u,v,w,T,q,q_,q;], vertical Diffusion [ u,v,w, T ]) \/—EC mc ¢P <P
temperature. Second, special aspects of the l _____ {, _____ < (TTp" ¢ o ¢
treatment of the advection of moisture variables. ——— | T T =T-T, | - (:)c{(rﬁn)po) o (T(O—)po) ) }
Besides the conservation and Stab”lty properties, (Radiation, Turbulence, Soil, Convection) T g ¢ ¢
e_rrors_ due to the splitting In the different spaf[ial i N ‘j — +g W{{(f;))ﬁmn x (%)T*(“) }+ £ | A7
directions are of great importance to establish onizontal Advection [u.v.w.p". T"] p(™
the overall quality of the transport scheme. Dynamics J'
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3. Advection of Moisture Variables i | 3.1. Schar et al. (MWR 2002) Test Case ~ —
After the calculations of the dynamical core the treatment of the scalar quantities follows (blue box in the flow chart). To be The local and global conservation properties of the — 1w .| © ]
able to deal with the advection in a single step, different Courant number independent schemes were implemented. On the different advection schemes in terrain following E L
one hand a 3d semi-Lagrangian scheme (using tri-cubic interpolation), on the other hand different Eulerian schemes coordinates show big differences. Apart from the = st—= © -
(among others the positive definite scheme of Bott (MWR 1989)). For the latter of them different points summarized in a tracer itself, which plays the part of a specific i V
paper of Skamarock (MWR 2006), are realized, i.e. a Courant number independant formulation, Strang-splitting as well as quantity, a exponentially distributed “density” is oL ... ... 3
a mass consistent treatment of the transport in conservation form. The main aspects here are (see equations on the left introduiced as a second 1o be advected field. wlmisl <[kl |
side below) the change to the densities or back to the specific quantities respectively (in black), simultaneous calculation of Gl S o NIt Pt S ThS s o

the continuity equation (in blue) and the treatment of the moisture advection in conservation form itself (in red).
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3.2. ... Further Simplification of the Test Problem...

... to the upwind 18t order advection of a constant field with the value one. Theoretically no flux
divergence should occur. However, inconsistencies arise, due to the 12.0 4
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=1, AC=1; Advection: UP(1°" order) = upper row: Bott (2" order) scheme / lower row: semi-Lagrangian (tri-cubic) scheme
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At |
T Ax | Ytk (Zf,ki - Z/,H;) - Ui—%,k( X n km It is important to notice, that the simultaneous transport of the artificial density field is only an integral part of the Eulerian
L L 11— treatment, the according calculation with the semi-Lagrangian scheme was done separately.
+E (Z. Ckwl — 7 1) — ( rhoat in kg/m3 While the Eulerian treatment shows good global conservation properties (see figure with volume integral of the tracer),
Ax | Imhkts SR ( max thoat = 6.4352 , min rhoat = 0.0156 ) serious deficiencies are apparent when it comes to local conservation (especially of the “density” field).




