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Introduction

A dynamic core ASAM (All Sacle Atmopsheric
Model) of the moist compressible Euler equation
in conservative form is presented.

The thermodynamic equations applied here differ
slightly from those used in most numerical models.
Traditionally, the specific heats of water vapor and
liquid water are ignored in numerical models, so
that Rm ≈ R , cpml ≈ cp, and cvml ≈ cv , yield-
ing the traditional potential temperature equation.
Unlike the complex bulk microphysical models typ-
ically employed in a majority of mesoscale mod-
els, a simple and differentiable parameterization
that converts water vapor into total cloud sub-

stance was utilized in the model so far. The micro-
physical model is completed by the addition of the
traditional bulk parameterization of the falling of
rain. The orography is incorporated in the model
through a special grid system, where the orogra-
phy is represented by cut cells in a Cartesian grid.
The time integration is accomplished by a linear
implicit method of Rosenbrock type. Because the
method is fully implicit, the approach is able to em-
ploy time steps that result in Courant-Friedrichs-
Lewy (CFL) numbers greater than one for advec-
tion, gravity, and sound waves; however, the dy-
namical time scale of the problem will be respected
for accuracy by a dynamic time step procedure.

The dry compressible Euler equation
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where ρ is the density of dry air, ρu, ρv, ρw are the three components of the mass flux, θ is the potential
temperature, and κ = R/cp.

Time integration

After spatial discretization an ordinary differential
equation

y′ = F (y)

is obtained which we integrate in time by a special
Rosenbrock-method.
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The above described Rosenbrock method allows a
simplified solution of the linear systems without
loosing the order. When J = JA + JB the matrix

S can be replaced by S = (I − γτJA)(I − γτJB).A
further simplification can be reached by omitting
some parts of the Jacobian or replacement of the
derivatives by the same derivatives of a simplified
operator F̃ (wn). The structure of the Jacobian
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A zero block 0 indicates that this block is not in-
cluded in the Jacobian or is absent. The derivative
with respect to ρ is only taken for the Buoyancy
term in the vertical momentum equation. Note
that this type of approximation is the standard
approach in the derivation of the Boussinesq ap-
proximation starting form the compressible Euler
equations. The matrix J can decomposed as
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The first part of the splitting JT is called the trans-
port/source part and contains the advection, dif-
fusion and source terms like Coriolis, curvature,
Buoyancy, latent heat, and so on. The second ma-
trix is called the pressure part and involves the
pressure gradient and the derivative of the diver-
gence with respect to momentum of the density and
potential temperature equation. The difference be-

tween the two splitting approaches is the insertion
of the derivative of the gravity term in the trans-
port or pressure matrix. The first splitting damps
sound waves and can be reduced to a Poisson-
like equation, whereas the second splitting damps
sound and gravity waves but the dimension of the
system is doubled.

Dry bubble test case

• Two-dimensional with a height of 10 km and
a width of 20 km.

• Initial unperturbed conditions is an at-
mosphere at rest, hydrostatic and neutrally
stable. (θ0 = 300K, p0 = 1000mb).

• A warm perturbation is placed at the center
of the domain with
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and xc = 10.0 km, zc = 2.0 km, and xr =
zr = 2.0 km.

• Grid size 100 m, integration time 1000 s.

Dry rising bubble with a time step of 1 s
(left) and 10 s (right) with potential temperature
(above) and vertical velocity (below).

Outlook

The following model applications and develop-
ments are planned:

• Simulation of stratiform clouds and the in-
fluence of anthropogenic emissions (Project:
EUCAARI).

• Turbulent dispersion of diaspore in complex
terrain (joint work with Institute of Meteo-
rology, University of Leipzig)

• Large eddy simulation of clouds and gravity

waves (PAKT Antrag, joint work with R.
Klein, PIK Potsdam, and U. Achatz, IAP
Kühlungsborn).

• Ultrafine particle simulations in the resolved
urban boundary layer on the bases of the
PURAT experimental data.

• New algorithms for block structured adap-
tive grids (SPP MetStroem).

• Prandtl layer approximation for cut cell ap-
proximation of steep orography.

The moist compressible Euler equation

Some thermodynamic definitions

• Density ρ is now the density of the moist air.

• New densities for water vapor ρv and cloud
water ρl.

• Define mixing ratios rV = ρv
ρd

and rl = ρl
ρd

.

• Specific heat of moist air at constant pres-
sure

cpml = cp + cpvrv + cplrl.

• Specific heat of moist air at constant volume
cvml = cv + cvvrv + cplrl.

• Gas constant of moist air Rm = R + Rvrv .

• Latent heat of vaporization
Lv = Lv0 − (cpl − cpv)(T − T0).

Redefined dry potential temperature
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After Bryan and Fritsch the following equation for the new defined dry potential temperature θ can be
derived in the moist case
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together with equations for the mixing ratios rv and rl
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where rCond is the transfer rate of condensation. With this definition the dry potential temperature is
conserved if no phase changes occur. This is not the case for the classical definition of the Exner pressure,
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Density potential temperature
Reformulated equation of state
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with κm = Rm/cpml and Θρ = ρθρ. Use the product rule to derive an equation for θρ.
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and convert to a flux form representation with respect to the full density.
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Representation of q̇v = −q̇l in the absence of rain.
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where Φc is a relaxation factor whose value depends on the grid size, qvs is the saturation ratio and
qlmax is a constant (1.e-5).

Changes in the numerics

• More complicated source term in the equation for the ”potential temperature”.

• Additional equations for the water substances.

• Inclusion of the fall velocity in the advection routine.

• Dependency of the pressure from qv and ql is not taken in to account in the Jacobian part of the
momentum equation.

Moist bubble test case
How the moist case is constructed.

• Base state is hydrostatic and neutral stable.

• Total water mixing ratio is constant, that is
rt = rv + rl = constant.

• The air is saturated everywhere and rl > 0.

• Phase changes are exactly reversible.

Under these assumptions a neutrally stable at-
mosphere can be characterized by one conservative
variable, in our case the wet equivalent potential
temperature
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where pd is the partial pressure of dry air.

The moist base case is computed from
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For moist conditions, buoyancy is given by
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To have the same initial buoyancy as in the dry
case
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In the perturbed bubble a further saturation ad-
justment is necessary.

Fig. 1  Results of the dry thermal simulation.  (a) 
Perturbation potential temperature, contour interval 0.2 
K, zero contour omitted.  (b) Vertical velocity, contour 
interval 2 m s-1, negative contours dashed. 

Fig. 2  Results of the moist simulation.  (a) Perturbation 
wet equivalent potential temperature, contour interval 
0.5 K, zero contour omitted.  (b) Vertical velocity, 
contour interval 2 m s-1, negative contours dashed. 

Picture from the Fritsch and Bryan paper

Moist rising bubble with a time step of 1 s (left)
and 10 s (right) with equivalent potential tem-
perature (above) and vertical velocity (below).


