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Background

• Conservation of fundamental properties 
(total mass, momentum, energy) has 
rarely been enforced in nonhydrostatic 
numerical models

• Reasons include:
– simplicity
– efficiency
– short integration times (hours or days)



Motivation

• Conservation has recently become a 
primary design feature of some 
nonhydrostatic modeling systems (e.g., 
WRF Model in USA, NICAM in Japan)

• Reasons:
– Transport and dispersion applications
– Long-term integrations for climate studies
– Some theoretical studies require greater 

precision (e.g., intensity of tropical cyclones)



Definition

• “conservation” is defined herein as both:

1. global conservation of a fundamental 
variable (such as total mass, total 
momentum, and total energy)

2. local conservation during application of a 
numerical algorithm … e.g., flux of mass out 
of a control volume = flux of mass into a 
neighboring control volume



Scope of this study

• Goal of this project has been to develop 
techniques that allow conservation of total 
mass, energy, and momentum for 
compressible, split-explicit nonhydrostatic 
models
– Compressible:  use un-approximated 

equations
– Split-explicit:  use a small timestep for 

acoustic modes, large timestep for other 
tendencies



A traditional approach:



Conservative equations:

e.g., Klemp et al. (2007, MWR)



Klemp et al. (2007, MWR)



→ In this system, total mass is conserved (locally and globally)



Unresolved issues:

• No guarantee of momentum conservation, 
owing to form of pressure-gradient terms

• No guarantee of total energy conservation
– In fact, an approximation is typically made 

wherein dissipative heating is neglected
– Dissipative heating is know to play an 

important role at high wind speeds (tropical 
cyclones) and long-term integrations 
(seasonal time scales)



Total Energy (Et)





Advantages:

• All terms are in flux form (except buoyancy) → conservation

• All variables on left side are either held fixed (e*) or are 
integrated on the small steps → efficiency and accuracy



Tests
• Developed a code that can integrate all three 

equation sets:
– Non-conserving (u, w, π, θ)
– Mass-conserving (U, W, ρ, Θ)
– Mass,Momentum,Energy-conserving (U, W, ρ, Et)

• Same techniques as WRF Model (ARW):
– 3rd-order Runge-Kutta
– 5th-order advection operators
– (Cartesian height coordinate is different from ARW)



A simple test:
• Warm bubble (“moist benchmark”) case

used by Bryan and Fritsch (2002, MWR)
• No analytic solution, but:

– well resolved (does not collapse to grid-scale)
– well-known solution (produced by many models)
– useful for testing dry and moist equations

• Details:
– 2D, Δx = Δz = 100 m
– Statically neutral initial state with warm bubble
– Integrate for 1000 s



Non-conserving Mass-conserving

run time:  79 s run time: 89 s

w (m/s) at t = 1000 s



Non-conserving Mass,Mo,Ene-conserving

run time:  79 s run time: 82 s

w (m/s) at t = 1000 s



Non-conserving Mass-conserving

run time:  79 s run time: 89 s

θ′ (K) at t = 1000 s



Non-conserving Mass,Mo,Ene-conserving

run time:  79 s run time: 82 s

θ′ (K) at t = 1000 s



Efficiency of dry bubble tests

• Run times:

– Non-conserving:  79 s
(fewer terms on small steps)

– Mass-conserving:  89 s
(more terms on small steps)
(calculation of π is expensive)

– Mass,Mo,Ene-conserving:  82 s
(more terms on small steps)



Setup for moist comparison simulations:



Non-conserving Mass,Mo,Ene-conserving

run time: 105 s run time: 118 s

Moist, subsaturated case: θv′ (K) at t = 1000 s



Non-conserving Mass,Mo,Ene-conserving

run time: 111 s run time: 121 s

Moist, saturated case: θe′ (K) at t = 1000 s



Summary

• It is possible to formulate a nonhydrostatic 
solver that conserves (locally and globally) 
total mass, momentum, and energy

• All tendencies on small timesteps are 
calculated using the model’s predictive 
variables: U,W,ρ,Et … similar in design to 
traditional u,v,π,θ solvers

• Our prototype solver is competitive (run-
time and RAM) with a traditional solver for 
both dry and moist flows
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