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Background

e Conservation of fundamental properties
(total mass, momentum, energy) has
rarely been enforced in nonhydrostatic
numerical models

 Reasons include:
— simplicity
— efficiency
— short integration times (hours or days)



Motivation

e Conservation has recently become a
primary design feature of some
nonhydrostatic modeling systems (e.g.,
WRF Model in USA, NICAM in Japan)

e Reasons:
— Transport and dispersion applications

— Long-term integrations for climate studies

— Some theoretical studies require greater
precision (e.g., intensity of tropical cyclones)



Definition
e ‘“conservation” Is defined herein as both:

1. global conservation of a fundamental
variable (such as total mass, total
momentum, and total energy)

2. local conservation during application of a
numerical algorithm ... e.g., flux of mass out
of a control volume = flux of mass into a
neighboring control volume



Scope of this study

o Goal of this project has been to develop
techniques that allow conservation of total
mass, energy, and momentum for
compressible, split-explicit nonhydrostatic
models

— Compressible: use un-approximated
equations

— Split-explicit: use a small timestep for
acoustic modes, large timestep for other
tendencies



A traditional approach:

Integrate equations for pressure (),
velocity (u,w), and potential temperature (0):

ou ou
— —UY— — W—

ox 0z
Ow ow

—U—— — W—

ox oz 70

Ox + EX ox 0z
06’ 00 06

— U= — W——

ot ox Oz

—_ _|_ -
ot Co

or’ R (8-?1,. 8’31)) o o
— —U— — W—




Conservative equations:

Want to integrate equations for density (p),
momentum (U = pu,W = pw), and entropy (© = pb):
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e.g., Klemp et al. (2007, MWR)



Solution part 1:

recast momentum variables in terms of perturbations
from a recent time t:

U=U"+U"
W =W+ Ww”
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Solution part 2:

recast pressure gradients in terms of ©
(using ideal gas law)
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— In this system, total mass is conserved (locally and globally)




Unresolved I1ssues:

 No guarantee of momentum conservation,
owing to form of pressure-gradient terms

 No guarantee of total energy conservation

— In fact, an approximation is typically made
wherein dissipative heating Is neglected

— Dissipative heating is know to play an
Important role at high wind speeds (tropical
cyclones) and long-term integrations
(seasonal time scales)



Total Energy (E,)

A different approach: use total energy, E;, as a predictive variable
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Calculate pressure gradient in terms of F:
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Integrate a governing equation for F;:
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New solution procedure:
use same techniques as before
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Advantages:

 All terms are In flux form (except buoyancy) — conservation

o All variables on left side are either held fixed (e*) or are
Integrated on the small steps — efficiency and accuracy




Tests

 Developed a code that can integrate all three
eguation sets:
— Non-conserving (u, w, mt, 0)
— Mass-conserving (U, W, p, ©)
— Mass,Momentum,Energy-conserving (U, W, p, E))

« Same techniqgues as WRF Model (ARW):
— 3rd-order Runge-Kutta
— 5th-order advection operators
— (Cartesian height coordinate is different from ARW)



A simple test:

« \Warm bubble (“moist benchmark”) case
used by Bryan and Fritsch (2002, MWR)

 No analytic solution, but:
— well resolved (does not collapse to grid-scale)

— well-known solution (produced by many models)
— useful for testing dry and moist equations
e Detalls:

— 2D, Ax=Az=100m

— Statically neutral initial state with warm bubble
— Integrate for 1000 s
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w (m/s) att = 1000 s

Non-conserving
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Mass,Mo,Ene-conserving
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0’ (K)att=1000s
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Efficiency of dry bubble tests

e Run times:

— Non-conserving: 79 s
(fewer terms on small steps)

— Mass-conserving: 89 s
(more terms on small steps)
(calculation of &t Is expensive)

— Mass,Mo,Ene-conserving: 82 s
(more terms on small steps)



Setup for moist comparison simulations:

moist, subsaturated (¢, > 0,q. = 0):

do,
N2 =2_~¢
, dz

e

=0

moist, saturated (¢, > 0, q. > 0):
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Moist, subsaturated case: 0, (K) att= 1000 s

Non-conserving Mass,Mo,Ene-conserving
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Moist, saturated case: 0.’ (K) att= 1000 s

Non-conserving Mass,Mo,Ene-conserving
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Summary

* ItIs possible to formulate a nonhydrostatic
solver that conserves (locally and globally)
total mass, momentum, and energy

 All tendencies on small timesteps are
calculated using the model’s predictive
variables: U,W,p,E, ... similar in design to
traditional u,v,=,0 solvers

« Our prototype solver is competitive (run-
time and RAM) with a traditional solver for
both dry and moist flows
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