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Objectives of MPI-M and DWD

DWD (NWP):

combined regional and global prediction system for the short range to the seasonal 
prediction time scale

improvement of numerical properties in comparison to current models

enhanced use of satellite data

synergies from cooperation with MPI-M:

in physical parametrisations

in experience in modelling of the stratosphere

in the use of the ocean model of the MPI-M for seasonal forecasts

MPI-M (climate simulations):

numerical conservation properties for mass, tracer, energy, momentum

common grid structure for ocean and atmospheric model and therefore an improved 
interaction of essential parts of the Earth system model

synergies from cooperation with MPI-M:

in data assimilation

in continuous evaluation and optimization in operational use



Global and regional grids

Icosahedron
12 knots

20 equilateral triangles

Example for local 
grid refinement
Quasi-uniform base grid:
1 icosahederon edge 6 cell edges

2-step refinement in an European 
region by division of edges:
1 triangle 4 triangles 16 
triangles

pentagons



Basic operators on the C-grid

Application of integral theorems

normal velocity u

vorticity ζ

height h

The velocity is given counterclockwise.

Rotation for hexagons:
Stokes theorem
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Divergence for triangles:
Gauss theorem
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The velocity points outward.
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Gradient at an edge:
given by the relation
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Grid optimization

λ δ

circumcenters of triangles

gradient is needed here

These distances of equal length!

Initially, all distances are great circles on the globe.
Second, apply a Heikes/Randall grid optimization as a variational 
optimization of the distances δ.
Last, add small circle optimization for the arc λ between two vertices.

λ δ

triangular grid rectangular grid
lat-lon

meridian
(great circle)

circle of latitude
(small circle)



Shallow water test case (1)

Rossby-Haurwitz-wave at day 10
Isolines: NCAR reference, Colors: ICON

rel. l2-error: 4.257*10-4



Shallow water test case (2)

Rossby-Haurwitz-wave
L2-norm to NCAR-reference

ICOSWP and GME



Concepts for conservation properties for non-hydrostatic models (1)

Conservable quantities in an ideal fluid are:

Energy

Mass

Entropy

(corresponds to Lagrangian conservation of potential temperature)

Vortex charge

(corresponds to Lagrangian conservation of Ertel’s potential vorticity)
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with F a functional (e.g. delta functional) of the prognosed quantity

and ha the absolute helicity

Concepts for conservation properties for non-hydrostatic models (1)
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Energy as a constituting and conserved dynamical quantity:
Hamiltonian dynamics with antisymmetric Poisson brackets {F,H}

Conservation of more dynamical quantities (Casimirs) X:
Nambu dynamics with antisymmetric Nambu brackets {F,X,H}
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Nambu dynamics with dissipative source functions

together with the H2O budget equations
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diabatic source terms

Non-dissipativer
Nambu bracket part

realistic scale interaction

mass conservation

Dissipative
source function part

control of
dissipative processes

production of entropy

Energy conservation is only achieved with both parts!
Numerical operators do no sources or sinks for entropy or energy by their own!



Numerically consistent spatial operators (1)

To keep antisymmetric structure of the Nambu brackets is a must during the 
discretisation process. 
It explains the success of Salmon's SWE and the Arakawa Jacobian.

Simple recipe... 
...approximate the integrals a sums over grid boxes!
...preserve antisymmetry of Nambu brackets

(possibly by 1/3 weights on each permutation)
...and be careful!
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Numerically consistent spatial operators (2)

Result for the vxω term (the helicity bracket):
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(1975) enstrophy conserving scheme,
a similarity exists if double averaging is 
dropped. (But care: The Nambu brackets 
of the SW system are completely 
different!)

( ) ( )

( )
( )x

ii

x

i

x
+i+i

x

+i
i

i

x

i+i

x

+i
i

i+i

x
+iv,pi+i

+i

θuρθuρ
Δx

=
t
ρθ

uρuρ
Δx

=
t
ρ

ππ
Δx

θcuu
Δx

=
t

u

2/12/12/12/12/12/1

2/12/12/12/1

2/12/12/1
2

2/1
2

2/3
2/1

1

1

1
4
1

−−−

−−

−−

−−
∂
∂

−−
∂
∂

−−−−
∂

∂

Result for the other brackets (1-dimensional example)

The kinetic energy is obtained by first squaring and subsequent averaging. The 
mass flux is multiplied with θ.

General rule: guarantee for          to remain antisymmetric.
guarantee the rule 
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1-D example with {F,M,H} and added consistent time scheme

Dynamics of {F,M,H} bracket
alone corresponds to 
Burgers equation

Dissipative processes
have to be added via
physical turbulence 
parameterization. 
That is beyond the scope of 
discretized 
Nambu brackets.
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1-D example with {F,M,H} and {F,Θ,H} and consistent time scheme (1)

With the dynamics of the {F,M,H} and {F,Θ,H} brackets we can 
study the vertical propagation of sound waves as in Satoh*.

Experimental setup:
T=250 K, hydrostatic rest, 
p'_ini=100Pa between 2.5 and 5 km,
dt=2sec, t_max=100sec

*Satoh,M., 2002: Conservative scheme for the 
compressible nonhydrostatic models with
the horiontally explicit and vertically implicit ime integration
scheme. MWR 130, 
1227-1245
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Satoh: conservationSatoh: noncorrection

1-D example with {F,M,H} and {F,Θ,H} and conistent time scheme (2)

Energy conservation is
obtained without correction 
or the use of energy as a 
prognostic quantity.

We observe transformation
between availabe energy 
and kinetic energy
as desired.



Summary

•ICON will be developed as
•a new climate simulation and NWP model

•with a new numerical concept

•on a new grid

•ICON fundament is available with
•flexible grid generator

•existing shallow water model

•hydrostatic model under development

•operators build from antisymmetric Nambu brackets

•consistently derived model equations with turbulence, diabatic

source terms, and H2O
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