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Project aims:

The “microscale model” project was developed to:

• investigate modelling approaches for very high-resolution studies;

• explore the applicability of full atmospheric models for flows 

on scales of O(<100m);

• provide an accessible research model;

• provide a resource to help improve our understanding of 

small-scale dynamics/processes
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• equation set:
3D, Cartesian, non-hydrostatic, 
fully compressible

• prognostic/diagnostic variables

• time-stepping:
time-splitting method

• numerical schemes:
fully explicit (horizontal & vertical)
1st-order forward-in-time
1st-order upwind scheme

• grid: Arakawa-C (horizontal)
Charney-Phillips (vertical)

• lower boundary:
LMz immersed boundary scheme

Model details:
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Model details:
Prognostic variables:

u
v wind velocity
w
π ’ Exner pressure pert.
θ ’ potential temp. pert.
q (moist version) 

Diagnostic variables:
ρ density
Π Exner pressure field
Θ potential temp.
p pressure
T in situ temperature
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• equation set:
3D, Cartesian, non-hydrostatic, 
fully compressible

• prognostic/diagnostic variables

• time-stepping:
time-splitting method

• numerical schemes:
fully explicit (horizontal & vertical)
1st-order forward-in-time
1st-order upwind scheme

• grid: Arakawa-C (horizontal)
Charney-Phillips (vertical)

• lower boundary:
LMz immersed boundary scheme

Model details:
Based on Klemp & Wilhelmson (1978):

Equations take the form

where sφ = fast modes
fφ = slow modes

n

n+1

Update slow modes on 
long time-step (Δt)…

…and fast modes 
on intermediate 
short steps (Δτ)
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Model equations (time-split form):

LHS: fast modes
(acoustic only)

RHS: slower modes
(inc. gravity, advection, …)

0 (as in KW78)
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• equation set:
3D, Cartesian, non-hydrostatic, 
fully compressible

• prognostic/diagnostic variables

• time-stepping:
time-splitting method

• numerical schemes:
fully explicit (horizontal & vertical)
1st-order forward-in-time
1st-order upwind scheme

• grid: Arakawa-C (horizontal)
Charney-Phillips (vertical)

• lower boundary:
LMz immersed boundary scheme

Currently using simple schemes:
For time-differencing:

On the long step,
1st-order forward-in time

On the short step,
1st-order forward-
backward

Model details:
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• equation set:
3D, Cartesian, non-hydrostatic, 
fully compressible

• prognostic/diagnostic variables

• time-stepping:
time-splitting method

• numerical schemes:
fully explicit (horizontal & vertical)
1st-order forward-in-time
1st-order upwind scheme

• grid:   Arakawa-C (horizontal)
Charney-Phillips (vertical)

• lower boundary:
LMz immersed boundary scheme

Model details: Arakawa-C grid (horizontal):

Charney-Phillips grid (vertical):

x

y

x

z
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• equation set:
3D, Cartesian, non-hydrostatic, 
fully compressible

• prognostic/diagnostic variables

• time-stepping:
time-splitting method

• numerical schemes:
fully explicit (horizontal & vertical)
1st-order forward-in-time
1st-order upwind scheme

• grid: Arakawa-C (horizontal)
Charney-Phillips (vertical)

• lower boundary:
LMz immersed boundary scheme

Model details:
LMz immersed boundary scheme:

• Vertical levels remain horizontal
• Orography cuts through grid cells
• Shape defined by bilinear function
• Finite volume method for flow

through cut-cells
• Calculate

“weights”
for each cell

• Use “weights”
as simple 
factors during
integrations

From Steppeler et al. (2006)
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• Neutral flow over a 2D sinusoidal ridge

- domain: Δx = 100m (n=40), L = 3900m

Δz = 100m ( l=60), H = 5900m

- hill:

h0 = 200m, h(x) = [0,400] m

- initial conditions: u=10ms-1, v=w=0

- periodic lateral boundaries

• Moist version tests

Some early results :
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Neutral flow over 2D sinusoidal ridge :
Vertical wind field (w) results:
• results for 6400s, 12800s, 32000s
• contour intervals 0.1ms-1

• shows flow deceleration
- wmax(min): from 1.4 (-1.3) to 1.0 (-0.9)

z=2000m
0.2 0.2- 0.2 - 0.2

- 0.20.2

Analytic solution (w):
wmax(min) = 3.14 (-3.14) ms-1

Courtesy of N.Wood
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Neutral flow over 2D sinusoidal ridge :
Horizontal wind field (u) results:
• results for 6400s, 12800s, 32000s
• contour intervals 0.5ms-1

• strong deceleration 

z=2000m

7.5
7.5

7.5

Analytic solution (u):
umax = 13.14 ms-1

Courtesy of N.Wood
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Some early results :

• Neutral flow over a 2D sinusoidal ridge

• Moist version tests
- contribution from latent heat release

Neglecting terms due to diffusion or precipitation, equations for potential temperature and 
mixing ratios of water vapour and liquid water can be written

where C is rate of change of liquid water due to condensation and Lv is latent heat of vapourization
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Moist test over flat topography :

Model set-up

- domain: Δx = Δy = 100m (n=60, m=100); 
Δz = 250m (l=40)

- no orography
- initial conditions: u=5 ms-1, v=w=0
- periodic lateral boundaries

- linearly-varying background  profile
- ‘bubble’ of water vapour (0.004 kg kg-1)at 5x5x5 grd-pts
- calculation of condensation (dqL/dt)
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Moist flow over flat topography:  advection of vapour ‘bubble’
- results at 100s, 300s, 500s (vertical slice through centre of y-domain)
- contour intervals 0.0001 kg kg-1

time=100s time=300s time=500s
water vapour (mixing ratio)

liquid water (mixing ratio) 
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Moist version – on-going work:

Unfortunately, we have not managed to produce any cloud with this set-up (so far…)
- find more appropriate test cases for moist flow over idealized orography

Moist flow over 2D sinusoidal ridge:  advection of vapour ‘bubble’
- set-up as for dry 2D sinusoidal ridge, with linearly varying background theta
- ‘bubble’ of water vapour (0.015kg kg-1) of 1x1x5 grid-points
- calculation of condensation (dqL/dt)
- contour intervals 0.0001 kg kg-1

time=0s time=100s time=200s time=280s
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Future work:

On-going / short-term plans:

• consider free-slip / no-slip lower boundary condition

• improve advection schemes with “flux-corrector” method

• implement LES sub-grid turbulence scheme

• warm rain parameterization, based on Kessler, 1974 scheme

– includes autoconversion, accretion and evaporation processes

• continue comparisons with analytic solutions / other models 

– both dry and moist

Long-term plans:

• application to real data e.g. Gaudergrat Experiment

• three-phase (ice) microphysics
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