Institute for Atmospheric Science SCHOOL OF EARTH AND ENVIRONMENT

Development of a numerical model for studying microscale atmospheric dynamics

<u>S. Lock¹</u>, A. Coals¹, A. Gadian¹ H. Bitzer², U. Schaettler², J. Steppeler³

With thanks to S. Mobbs¹, D. Woodhead¹

¹University of Leeds, ²DWD, ³University of Bonn

7th SRNWP-workshop, Bad Orb, 5th-7th November 2007

Project aims:

The "microscale model" project was developed to:

- investigate modelling approaches for very high-resolution studies;
- explore the applicability of full atmospheric models for flows on scales of O(<100m);
- provide an accessible research model;
- provide a resource to help improve our understanding of small-scale dynamics/processes

Model details: • equation set: 3D, Cartesian, non-hydrostatic, fully compressible

- prognostic/diagnostic variables
- time-stepping:
 - time-splitting method
- numerical schemes:

fully explicit (horizontal & vertical) 1st-order forward-in-time 1st-order upwind scheme

- grid: Arakawa-C (horizontal) Charney-Phillips (vertical)
- lower boundary:

LMz immersed boundary scheme

• equation set:

3D, Cartesian, non-hydrostatic, fully compressible

- prognostic/diagnostic variables
- time-stepping: time-splitting method
- numerical schemes:

fully explicit (horizontal & vertical) 1st-order forward-in-time 1st-order upwind scheme

- grid: Arakawa-C (horizontal) Charney-Phillips (vertical)
- lower boundary:

LMz immersed boundary scheme

Prognostic variables:

и	2
V	wind velocity
W	\int
π '	Exner pressure pert.
heta '	potential temp. pert.
q	(moist version)

Diagnostic variables:

Θ

р

T

ρ	density
Π	Exner pressure field

- potential temp.
- pressure
- in situ temperature

• equation set:

3D, Cartesian, non-hydrostatic, fully compressible

- prognostic/diagnostic variables
- time-stepping: time-splitting method
- numerical schemes:

fully explicit (horizontal & vertical) 1st-order forward-in-time 1st-order upwind scheme

- grid: Arakawa-C (horizontal) Charney-Phillips (vertical)
- lower boundary:

LMz immersed boundary scheme

Based on Klemp & Wilhelmson (1978):

Model equations (time-split form):

$$\frac{\partial u}{\partial t} + c_{p}\overline{\theta}\frac{\partial \Pi'}{\partial x} = -\mathbf{u} \cdot \nabla u + fv - Fw + D_{u}$$

$$\frac{\partial v}{\partial t} + c_{p}\overline{\theta}\frac{\partial \Pi'}{\partial y} = -\mathbf{u} \cdot \nabla v - fu + D_{v}$$

$$\frac{\partial w}{\partial t} + c_{p}\overline{\theta}\frac{\partial \Pi'}{\partial z} = -\mathbf{u} \cdot \nabla w + Fu + g\frac{\theta'}{\overline{\theta}} + D_{w}$$

$$\frac{\partial \Pi'}{\partial t} + \frac{\overline{c}^{2}}{c_{p}\overline{\theta}}\nabla \cdot \mathbf{u} = \mathbf{0} \qquad (as in KW78)$$

$$\frac{\partial \theta'}{\partial t} = -\mathbf{u} \cdot \nabla \theta' - w\frac{d\overline{\theta}}{dz} + S_{\theta}$$

LHS: fast modes (acoustic only)

RHS: slower modes (inc. gravity, advection, ...)

UNIVERSITY OF LEEDS

• equation set:

3D, Cartesian, non-hydrostatic, fully compressible

- prognostic/diagnostic variables
- time-stepping: time-splitting method
- numerical schemes: fully explicit (horizontal & vertical) 1st-order forward-in-time 1st-order upwind scheme
- grid: Arakawa-C (horizontal) Charney-Phillips (vertical)
- lower boundary:

LMz immersed boundary scheme

Institute for Atmospheric Science SCHOOL OF EARTH AND ENVIRONMENT Currently using simple schemes: For time-differencing:

• equation set:

3D, Cartesian, non-hydrostatic, fully compressible

- prognostic/diagnostic variables
- time-stepping:
 time-splitting method
- numerical schemes:

fully explicit (horizontal & vertical) 1st-order forward-in-time 1st-order upwind scheme

- grid: Arakawa-C (horizontal) Charney-Phillips (vertical)
- lower boundary:

LMz immersed boundary scheme

Institute for Atmospheric Science SCHOOL OF EARTH AND ENVIRONMENT

UNIVERSITY OF LEEDS

• equation set:

3D, Cartesian, non-hydrostatic, fully compressible

- prognostic/diagnostic variables
- time-stepping:
 - time-splitting method
- numerical schemes:

fully explicit (horizontal & vertical) 1st-order forward-in-time 1st-order upwind scheme

• grid: Arakawa-C (horizontal) Charney-Phillips (vertical)

lower boundary:

LMz immersed boundary scheme

Institute for Atmospheric Science SCHOOL OF EARTH AND ENVIRONMENT

LMz immersed boundary scheme:

- Vertical levels remain horizontal
- Orography cuts through grid cells
- Shape defined by bilinear function
- Finite volume method for flow through cut-cells
- Calculate
 "weights"
 for each cell
- Use "weights" as simple factors during integrations

From Steppeler et al. (2006)

UNIVERSITY OF LEEDS

Some early results :

Neutral flow over a 2D sinusoidal ridge

- initial conditions: $u=10\text{ms}^{-1}$, v=w=0
- periodic lateral boundaries

Moist version tests

Some early results :

- Neutral flow over a 2D sinusoidal ridge
- Moist version tests
 - contribution from latent heat release

Neglecting terms due to diffusion or precipitation, equations for potential temperature and mixing ratios of water vapour and liquid water can be written

$$\frac{D\theta}{Dt} = \frac{L_v\,C}{c_p\,\Pi} \label{eq:phi}$$
 where $\Pi = (P/P_0)^{R/c_p}$

$$\frac{Dq_v}{Dt} = -C$$

$$\frac{Dq_L}{Dt} = C$$

where C is rate of change of liquid water due to condensation and L_v is latent heat of vapourization

Moist test over flat topography :

Model set-up

- domain: $\Delta x = \Delta y = 100m$ (n=60, m=100);

 $\Delta z = 250 m (I=40)$

- no orography
- initial conditions: $u=5 \text{ ms}^{-1}$, v=w=0
- periodic lateral boundaries
- linearly-varying background profile
- 'bubble' of water vapour (0.004 kg kg⁻¹)at 5x5x5 grd-pts
- calculation of condensation (dq_L/dt)

Moist flow over flat topography: advection of vapour 'bubble'

- results at 100s, 300s, 500s (vertical slice through centre of y-domain)
- contour intervals 0.0001 kg kg⁻¹

UNIVERSITY OF LEEDS

Moist version – on-going work:

Moist flow over 2D sinusoidal ridge: advection of vapour 'bubble'

- set-up as for dry 2D sinusoidal ridge, with linearly varying background theta
- 'bubble' of water vapour (0.015kg kg⁻¹) of 1x1x5 grid-points
- calculation of condensation (dq_L/dt)

- contour intervals 0.0001 kg kg⁻¹

Unfortunately, we have not managed to produce any cloud with this set-up (so far...)
find more appropriate test cases for moist flow over idealized orography

UNIVERSITY OF LEEDS

Future work:

On-going / short-term plans:

- consider free-slip / no-slip lower boundary condition
- improve advection schemes with "flux-corrector" method
- implement LES sub-grid turbulence scheme
- warm rain parameterization, based on Kessler, 1974 scheme
 - includes autoconversion, accretion and evaporation processes
- continue comparisons with analytic solutions / other models
 - both dry and moist

Long-term plans:

- application to real data e.g. Gaudergrat Experiment
- three-phase (ice) microphysics

Institute for Atmospheric Science SCHOOL OF EARTH AND ENVIRONMENT

Development of a numerical model for studying microscale atmospheric dynamics

S. Lock¹, A. Coals¹, A. Gadian¹ H. Bitzer², U. Schaettler², J. Steppeler³

With thanks to S. Mobbs¹, D. Woodhead¹

¹University of Leeds, ²DWD, ³University of Bonn

7th SRNWP-workshop, Bad Orb, 5th-7th November 2007